浏览全部资源
扫码关注微信
1.郑州中科新兴产业技术研究院,河南 郑州 450003
2.河南大学,郑州中科新兴产业技术研究院 龙子湖新能源实验室,河南 郑州 450003
3.中国科学院过程工程研究所 离子液体清洁过程北京市重点实验室,北京 100190
Published Online:26 December 2024,
Received:16 August 2024,
Revised:19 September 2024,
移动端阅览
张国霞,郝鹏波,焦念明等.轻质烷烃氧化裂解制低碳烯烃催化剂研究进展[J].低碳化学与化工,
ZHANG Guoxia,HAO Pengbo,JIAO Nianming,et al.Research progress on oxidative cracking catalysts of light alkanes to light olefins[J].Low-carbon Chemistry and Chemical Engineering,
张国霞,郝鹏波,焦念明等.轻质烷烃氧化裂解制低碳烯烃催化剂研究进展[J].低碳化学与化工, DOI:10.12434/j.issn.2097-2547.20240341.
ZHANG Guoxia,HAO Pengbo,JIAO Nianming,et al.Research progress on oxidative cracking catalysts of light alkanes to light olefins[J].Low-carbon Chemistry and Chemical Engineering, DOI:10.12434/j.issn.2097-2547.20240341.
轻质烷烃(C
2
~C
6
烷烃)氧化裂解工艺是生产低碳烯烃的路线之一,氧化裂解分为催化氧化裂解(COC)和氧化还原氧化裂解(ROC)两类。COC催化体系因存在氧气,容易引起过度氧化,导致CH
4
和CO
x
收率升高、烯烃收率降低;ROC催化体系虽降低了过度氧化问题,但操作温度和工艺复杂性限制了实际应用。概述了COC反应机理,并详细总结了应用于该体系的多种催化剂,包括稀土金属、贵金属、碱金属及其他催化剂。同时,介绍了ROC反应机理及用于该体系的钒基、钙钛矿催化剂。基于对现有研究的分析,总结了氧化裂解催化剂面临的挑战,对未来发展方向进行了展望,以期为新型氧化裂解高效催化剂开发提供参考。
Oxidative cracking process of light alkanes (C
2
~C
6
alkanes) is one of the key pathways for producing light olefins. Oxidative cracking can be divided into two types: Catalytic oxidative cracking (COC) and redox oxidative cracking (ROC). In COC systems
the presence of oxygen often leads to over-oxidation
resulting in higher yields of CH₄ and CO
x
and lower olefin yields. Although ROC systems decreases the issue of over-oxidation
their high operating temperatures and process complexity limit broader industrial application. The reaction mechanism of COC process was summarized
and catalysts used in this system were summarized
including rare-earth metals
noble metals
alkali metals and other catalysts. Meanwhile
the ROC reaction mechanism was discussed
along with the vanadium-based and perovskite catalysts. Based on analysis of current research
the challenges faced by oxidative cracking catalysts were summarized
and the future development direction was proposed
aiming to provide reference for the development of new and highly efficient oxidative cracking catalysts.
轻质烷烃氧化裂解催化剂低碳烯烃反应机理
light alkanesoxidative crackingcatalystlight olefinsreaction mechanism
XU Y H, ZUO Y F, YANG W J, et al. Targeted catalytic cracking to olefins (TCO): Reaction mechanism, production scheme, and process perspectives [J]. Engineering, 2023, 30: 100-109.
ALMUQATI N S, ALDAWSARI A M, ALHARBI K N, et al. Catalytic production of light olefins: Perspective and prospective [J]. Fuel, 2024, 366:131270.
SHA Y C, HAN L, WANG R Y, et al. Tailoring ZSM-5 zeolite through metal incorporation: Toward enhanced light olefins production via catalytic cracking: A minireview [J]. Industrial and Engineering Chemistry, 2023, 126: 36-49.
GHAVIPOUR M, KOPYSCINSKI J. Direct growth of SAPO-34 crystals on γAl2O3 microspheres: A designated catalyst for fluidized-bed reactors of methanol conversion to light olefins [J]. Catalysis Today, 2024, 437: 114784
SUN M L, ZHAI S X, WENG C C, et al. Pt-based catalysts for direct propane dehydrogenation: Mechanisms revelation, advanced design, and challenges [J]. Molecular Catalysis, 2024, 558: 114029.
AMUSA H K, ADAMU S, BAKARE I A, et al. High-performance VOx on SrO-γ-Al2O3 catalyst for oxidative cracking of n-hexane to light olefins under anaerobic environment [J]. Journal of Industrial and Engineering Chemistry, 2020, 89: 339-350.
BOYADJIAN C, SESHAN K, LEFFERTS L, et al. Production of C3/C4 olefins from n-hexane: Conceptual design of a catalytic oxidative cracking process and comparison to steam cracking [J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 342-351.
NAKAMURA M, TAKENAKA S, YAMANAKA I, et al. Production of alkenes through oxidative cracking of n-butane over OCM catalysts [J]. Studies in Surface Science and Catalysis, 2000, 130: 1781-1786.
BOYADJIAN C, LEFFERTS L, SESHAN K. Catalytic oxidative cracking of hexane as a route to olefins [J]. Applied Catalysis A: General, 2010, 372(2): 167-174.
BOYADJIAN C, VEER B V D, BABICH I V, et al. Catalytic oxidative cracking as a route to olefins: Oxidative conversion of hexane over MoO3-Li/MgO [J]. Catalysis Today, 2010, 157(1): 345-350.
NARASIMHARAO K, AL SULTAN F S. Y2O3 modified Au-La2O3 nanorod catalysts for oxidative cracking of n-propane [J]. Fuel, 2020, 280:118599.
ELBADAWI A H, KHAN M Y, QUDDUS M R. Kinetics of oxidative cracking of n-hexane to olefins over VOx/Ce-Al2O3 under gas phase oxygen-free environment [J]. AIChE Journal, 2017, 63(1): 130-138.
DUDEK R B, TIAN X, BLIVIN M, et al. Perovskite oxides for redox oxidative cracking of n-hexane under a cyclic redox scheme [J]. Applied Catalysis B: Environmental, 2019, 246: 30-40
HAO F, GAO Y F, LIU J C, et al. Zeolite-assisted core-shell redox catalysts for efficient light olefin production via cyclohexane redox oxidative cracking [J]. Chemical Engineering Journal, 2021, 409: 128192.
BOYADJIAN C, LEFFERTS L. Catalytic oxidative cracking of light alkanes to alkenes [J]. European Journal of Inorganic Chemistry, 2018, 2018(19): 1956-1968.
BASAHEL S N, MEDKHALI A H A, MOKHTAR M, et al. Noble metal (Pd, Pt and Rh) incorporated LaFeO3 perovskite oxides for catalytic oxidative cracking of n-propane [J]. Catalysis Today, 2022, 397/398/399: 81-93.
LEVELES L, SESHAN K, LERCHER J A, et al. Oxidative conversion of propane over lithium-promoted magnesia catalyst: I. Kinetics and mechanism [J]. Journal of Catalysis, 2003, 218(2): 296-306.
NARASIMHARAO K, ALI T T,. Catalytic oxidative cracking of propane over nanosized gold supported Ce0.5Zr0.5O2 catalysts [J]. Catalysis Letters, 2013, 143(10): 1074-1084.
YOSHIMURA Y, KIJIMA N, HAYAKAWA T, et al. Catalytic cracking of naphtha to light olefins [J]. Catalysis Surveys from Japan, 2001, 4(2): 157-167.
LEVELES L, FUCHS S, SESHAN K, et al. Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts [J]. Applied Catalysis A: General, 2002, 227(1): 287-297.
AL-SULTAN F S, BASAHEL S N, NARASIMHARAO K. Yttrium oxide supported La2O3 nanomaterials for catalytic oxidative cracking of n-propane to olefins [J]. Catalysis Letters, 2020, 150(1): 185-195.
NARASIMHARAO K, ALSHEHRI A. Gold supported yttrium oxide nanorods for catalytic oxidative cracking of n-propane to light olefins [J]. Fuel, 2020, 278: 118375.
SÁ J, MATTHEW A, DELGADO J J, et al. Activation of alkanes by gold-modified lanthanum oxide [J]. Chemcatchem, 2011, 3(2): 394-398.
AL-SULTAN F S, BASAHEL S N, NARASIMHARAO K. Catalytic oxidative cracking of n-propane over nanosized gold supported La2O3 catalysts [J]. Fuel, 2018, 233:796-804.
朱海欧.重质烃氧化裂解制低碳烯烃和轻质油品的研究[D]. 大连: 大连化学物理研究所, 2005.
ZHU H O. Production of lower alkenes and light oil by oxidative cracking of heavy hydrocarbons [D]. Dalian: Dalian Institute of Chemical Physics, 2005.
LEVELES L, SESHAN K, LERCHER J A, et al. Oxidative conversion of propane over lithium-promoted magnesia catalyst: II. Active site characterization and hydrocarbon activation [J]. Journal of Catalysis, 2003, 218(2): 307-314.
TRIONFETTI C, AǦIRAL A, GARDENIERS J G E, et al. Oxidative conversion of propane in a microreactor in the presence of plasma over MgO-based catalysts: An experimental Study [J]. The Journal of Physical Chemistry C, 2008, 112(11): 4267-4274.
LIU X B, LI W Z, ZHU H O, et al. Light alkenes preparation by the gas phase oxidative cracking or catalytic oxidative cracking of high hydrocarbons [J]. Catalysis Letters, 2004, 94(1/2): 31-36.
BOYADJIAN C, AĞIRAL A, GARDENIERS J G E, et al. Oxidative conversion of hexane to olefins-influence of plasma and catalyst on reaction pathways [J]. Plasma Chemistry and Plasma Processing, 2011, 31(2): 291-306.
KIJIMA N, MATANO K, SAITO M, et al. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst [J]. Applied Catalysis A: General, 2001, 206(2): 237-244.
KALIYA M L, KOGAN S B. Highly effective oxidative cracking of n-butane in light olefins on a novel cobalt catalyst [J]. Catalysis Today, 2005, 106(1): 95-98.
WANG B, WU X D, RAN R, et al. Participation of sulfates in propane oxidation on Pt/ SO<math id="M26"><msubsup><mrow/><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71313249&type=3.64066648https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71313266&type=2.37066650/CeO2-ZrO2 catalyst [J]. Journal of Molecular Catalysis A: Chemical, 2012, 361-362: 98-103.
FUCHS S, LEVELES L, SESHAN K, et al. Oxidative dehydrogenation and cracking of ethane and propane over LiDyMg mixed oxides [J]. Topics in Catalysis, 2001, 15(2): 169-174.
BOYADJIAN C, LEFFERTS L. Promoting Li/MgO catalyst with molybdenum oxide for oxidative conversion of n-hexane [J]. Catalysts, 2020, 10(3): 354.
QIAN S Y, ZHANG P L, XIAO X H, et al. Boosting gas-phase radical reactions for efficient oxidative dehydrogenation of propane over boron-based macropore catalyst [J]. Chemical Engineering Journal, 2024, 495: 153625.
MCDERMOTT W P, VENEGAS J, HERMANS I. Selective oxidative cracking of n-butane to light olefins over hexagonal boron nitride with limited formation of COx [J]. ChemSusChem, 2020, 13(1): 152-158.
AMUSA K H, SAGIR A, ABEER S A, et al. Kinetics of oxidative cracking of n-hexane to light olefins using lattice oxygen of a VOx/SrO-γAl2O3 catalyst [J]. Chemistry—An Asian Journal, 2021, 16(13): 1792-1806.
HAO F, GAO Y F, NEAL L, et al. Sodium tungstate-promoted CaMnO3 as an effective, phase-transition redox catalyst for redox oxidative cracking of cyclohexane [J]. Journal of Catalysis, 2020, 385: 213-223.
CHEN L Y, MAO R. Lattice oxygen behaviors of Mn-based catalytic oxygen carriers and sustainable oxidative coupling of methane in chemical-looping scheme [J]. Fuel, 2024, 371: 131910.
HARIBAL V P, CHEN Y, NEAL L, et al. Intensification of ethylene production from naphtha via a redox oxy-cracking scheme: Process simulations and analysis [J]. Engineering, 2018, 4(5): 714-721
CHEN L, YAN C, ZHANG F F, et al. Modulated oxygen mobility of perovskite oxides for efficient redox oxidative cracking of cycloalkane to light olefins [J]. Chemical Engineering Journal, 2023, 477: 146894.
CHEN L, CHI J S, CHEN L, et al. Lattice oxygen modulation for efficient chemical looping redox oxidative cracking of cycloalkane to light olefins: The influence of the active sites configuration [J]. Journal of Catalysis, 2024, 439: 115727.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution