浏览全部资源
扫码关注微信
1.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
2.太原理工大学 煤科学与技术教育部重点实验室,山西 太原 030024
3.潞安化工集团有限公司,山西 长治 046204
Received:29 July 2024,
Revised:23 August 2024,
Published:25 April 2025
移动端阅览
于静文,李忠,武蒙蒙等.吲哚基多孔有机聚合物对碘蒸气的吸附性能[J].低碳化学与化工,2025,50(04):90-97.
YU Jingwen,LI Zhong,WU Mengmeng,et al.Iodine vapor adsorption performance of indole-based porous organic polymers[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):90-97.
于静文,李忠,武蒙蒙等.吲哚基多孔有机聚合物对碘蒸气的吸附性能[J].低碳化学与化工,2025,50(04):90-97. DOI: 10.12434/j.issn.2097-2547.20240315.
YU Jingwen,LI Zhong,WU Mengmeng,et al.Iodine vapor adsorption performance of indole-based porous organic polymers[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):90-97. DOI: 10.12434/j.issn.2097-2547.20240315.
研发高效放射性碘吸附材料对核废料处理及核能安全利用具有重要意义。分别以2-苯基吲哚(2-PhIn)和1-甲基-2-苯基吲哚(1-Me-2-PhIn)为构筑单元,甲缩醛(FDA)为外交联剂,在无水FeCl
3
催化作用下通过Friedel-Crafts烷基化反应合成了两种多孔有机聚合物,研究了聚合物的碘蒸气吸附性能及构效关系。结果表明,甲基空间位阻效应对聚合过程产生了不利影响,导致聚合物孔结构较差。聚合物碘吸附性能受吸附位点和孔结构双重影响。1-Me-2-PhIn-P碘吸附量更高(2.99 g/g),优于商业活性炭。在首次碘蒸气吸附过程中,主要以化学吸附作用为主,I
2
与富π电子聚合物骨架通过路易斯酸/碱相互作用转变为聚碘阴离子(
<math id="M1"><msubsup><mrow><mi mathvariant="normal">I</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502308&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502299&type=
2.11666679
和
<math id="M2"><msubsup><mrow><mi mathvariant="normal">I</mi></mrow><mrow><mn mathvariant="normal">5</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502324&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502313&type=
2.11666679
),且较大的平均孔径有助于客体碘物种富集。此外,
吸附碘蒸气后的1-Me-2-PhIn-P可在125 ℃下再生,经5次循环后碘吸附量和吸附效率仍可分别保持在1.81 g/g和60.5%,物理吸附在多次循环实验中发挥主导作用。本研究可为气态放射性碘吸附材料开发提供新借鉴。
The development of highly efficient radioactive iodine adsorption materials is of great significance for the disposal of nuclear waste and the safe utilization of nuclear energy. Two kinds of porous organic polymers were synthesized via
Friedel-Crafts alkylation reaction using 2-phenylindole (2-PhIn) and 1-methyl-2-phenylindole (1-Me-2-PhIn) as the building units
formaldehyde dimethyl acetal (FDA) as the external cross-linker and anhydrous FeCl
3
as the catalyst. The iodine vapor adsorption properties and structure-activity relationships of the polymers were investigated. It is found that the steric hindrance effect of methyl group has a negative impact on the polymerization process
resulting in polymers with poor pore texture. The iodine adsorption properties of polymers are influenced by both the adsorption sites and the pore structures. 1-Me-2-PhIn-P exhibits a higher iodine adsorption capacity (2.99 g/g)
which is superior to commercial activated carbon. During the initial iodine vapor adsorption process
chemisorption plays a dominant role
where I
2
interacts with the π-electron-rich polymer framework through Lewis acid/base interactions to form polyiodide anions (
<math id="M3"><msubsup><mrow><mi mathvariant="normal">I</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502348&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502328&type=
2.11666679
and
<math id="M4"><msubsup><mrow><mi mathvariant="normal">I</mi></mrow><mrow><mn mathvariant="normal">5</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502330&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502364&type=
2.11666679
). Furthermore
the larger average pore size facilitates the enrichment of guest iodine species. Additionally
1-Me-2-PhIn-P adsorbed with iodine vapor can be regenerated at 125 ℃. After 5 cycles
the iodine adsorption capacity and adsorption efficiency can still be maintained at 1.81 g/g and 60.5%
respectively. Physisorption plays a major role in the cycling experiments. This research can offer new references for the development of gaseous radioactive iodine adsorption materials.
YU J W , SONG L N , WANG Y S , et al . Three novel indole-based porous organic polymers for efficient iodine capture in water [J ] . Journal of Radioanalytical and Nuclear Chemistry , 2023 , 332 : 4271 - 4290 .
KURISINGAL J F , YUN H , HONG C S . Porous organic materials for iodine adsorption [J ] . Journal of Hazardous Materials , 2023 , 458 : 131835 .
HAO Y X , TIAN Z J , LIU C Y , et al . Recent advances in the removal of radioactive iodine by bismuth-based materials [J ] . Frontiers in Chemistry , 2023 , 11 : 1122484 .
万欢爱 , 邵礼书 , 刘娜 , 等 . 氮修饰木质素基超交联聚合物的制备及其放射性碘捕获 [J ] . 化工进展 , 2022 , 41 ( 10 ): 5599 - 5611 .
WAN H A , SHAO L S , LIU N , et al . Preparation of nitrogen modified lignin-based hyper-cross-linked polymers and their radioactive iodine capture [J ] . Chemical Industry and Engineering Progress , 2022 , 41 ( 10 ): 5599 - 5611 .
PAN T T , YANG K J , DONG X L , et al . Adsorption-based capture of iodine and organic iodides: Status and challenges [J ] . Journal of Materials Chemistry A , 2023 , 11 ( 11 ): 5460 - 5475 .
SHETA S M , HAMOUDA M A , ALI O I , et al . Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal-organic frameworks: A review [J ] . RSC Advances , 2023 , 13 ( 36 ): 25182 - 25208 .
林益军 , 朱云龙 , 旷桂超 , 等 . 用于放射性碘吸附的多孔有机聚合物 [J ] . 化学进展 , 2017 , 29 ( 7 ): 766 - 775 .
LIN Y J , ZHU Y L , KUANG G C , et al . Application of porous organic polymers in the radioactive iodine adsorption [J ] . Progress in Chemistry , 2017 , 29 ( 7 ): 766 - 775 .
THEISS F L , AYOKO G A , FROST R L . Iodide removal using LDH technology [J ] . Chemical Engineering Journal , 2016 , 296 : 300 - 309 .
ZHANG X R , MADDOCK J , NENOFF T M , et al . Adsorption of iodine in metal-organic framework materials [J ] . Chemical Society Reviews , 2022 , 51 ( 8 ): 3243 - 3262 .
XIE W , CUI D , ZHANG S R , et al . Iodine capture in porous organic polymers and metal-organic frameworks materials [J ] . Materials Horizons , 2019 , 6 ( 8 ): 1571 - 1595 .
YU J W , SONG L N , WANG Y S , et al . Three novel indole-bearing porous organic polymers for efficient iodine capture from both vapor and organic phases [J ] . New Journal of Chemistry , 2023 , 47 ( 38 ): 18070 - 18085 .
于静文 , 宋璐娜 , 刘砚超 , 等 . 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用 [J ] . 化工进展 , 2023 , 42 ( 7 ): 3674 - 3683 .
YU J W , SONG L N , LIU Y C , et al . An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 7 ): 3674 - 3683 .
JANETA M , BURY W , SZAFERT S . Porous silsesquioxane-imine frameworks as highly efficient adsorbents for cooperative iodine capture [J ] . ACS Applied Materials & Interfaces , 2018 , 10 ( 23 ): 19964 - 19973 .
LI X M , CHEN G , XU H , et al . Task-specific synthesis of cost-effective electron-rich thiophene-based hypercrosslinked polymer with perylene for efficient iodine capture [J ] . Separation and Purification Technology , 2019 , 228 : 115739 .
ZHANG D , CHEN Y P , WANG J J , et al . Melamine-functionalization of the carbonyl-rich polymers for iodine vapor and Hg 2+ capture [J ] . Chemical Engineering Journal , 2023 , 460 : 141669 .
YAN Z J , YUAN Y , TIAN Y Y , et al . Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites [J ] . Angewandte Chemie International Edition , 2015 , 54 ( 43 ): 12733 - 12737 .
ZHU Y L , JI Y J , WANG D G , et al . BODIPY-based conjugated porous polymers for highly efficient volatile iodine capture [J ] . Journal of Materials Chemistry A , 2017 , 5 ( 14 ): 6622 - 6629 .
CHEN D Y , FU Y , YU W G , et al . Versatile adamantane-based porous polymers with enhanced microporosity for efficient CO 2 capture and iodine removal [J ] . Chemical Engineering Journal , 2018 , 334 : 900 - 906 .
SHANG Z K , ZHAO B , WU Z Q , et al . Synthesis of conjugated mesoporous hyper-cross-linked polymers for efficient capture of dibenzothiophene and iodine [J ] . ACS Applied Materials & Interfaces , 2020 , 12 ( 50 ): 56454 - 56461 .
HUGHES J T , SAVA D F , NENOFF T M , et al . Thermochemical evidence for strong iodine chemisorption by ZIF-8 [J ] . Journal of the American Chemical Society , 2013 , 135 ( 44 ): 16256 - 16259 .
SUN H X , LA P Q , ZHU Z Q , et al . Capture and reversible storage of volatile iodine by porous carbon with high capacity [J ] . Journal of Materials Science , 2015 , 50 ( 22 ): 7326 - 7332 .
YAN X , YANG Y X , LI G R , et al . Thiophene-based covalent organic frameworks for highly efficient iodine capture [J ] . Chinese Chemical Letters , 2023 , 34 ( 1 ): 107201 .
YANG Y L , LAI Z Q . Ferrocene-based porous organic polymer for photodegradation of methylene blue and high iodine capture [J ] . Microporous and Mesoporous Materials , 2021 , 316 : 110929 .
SVENSSON P H , KLOO L . Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems [J ] . Chemical Reviews , 2003 , 103 ( 5 ): 1649 - 1684 .
下转第 106 页)
YOSHIDA Y , ISHII Y , KATO N , et al . Low-temperature phase transformation accompanied with charge-transfer reaction of polyiodide ions encapsulated in single-walled carbon nanotubes [J ] . Journal of Physical Chemistry C , 2016 , 120 ( 36 ): 20454 - 20461 .
BENESI H A , HILDEBRAND J H . A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons [J ] . Journal of the American Chemical Society , 1949 , 71 ( 8 ): 2703 - 2707 .
CHENG P Y , ZHONG D , ZEWAIL A H . Microscopic solvation and femtochemistry of charge-transfer reactions: The problem of benzene(s)-iodine binary complexes and their solvent structures [J ] . Chemical Physics Letters , 1995 , 242 ( 4/5 ): 369 - 379 .
骆万兴 , 刘希光 , 曲荣君 , 等 . 碘吸附材料的吸附类型综述 [J ] . 鲁东大学学报(自然科学版) , 2009 , 25 ( 2 ): 165 - 170 .
LUO W X , LIU X G , QU R J , et al . Summary of the types of iodine absorption materials [J ] . Ludong University Journal (Natural Science Edition) , 2009 , 25 ( 2 ): 165 - 170 .
GOSWAMI A , GARAI M , BIRADHA K . Interplay of halogen bonding and hydrogen bonding in the cocrystals and salts of dihalogens and trihalides with N,N’-bis(3-pyridylacrylamido) derivatives: Phosphorescent organic salts [J ] . Crystal Growth & Design , 2019 , 19 ( 4 ): 2175 - 2188 .
ORDINARTSEV A A , PETROV A A , LYSSENKO K A , et al . Crystal structure of new formamidinium triiodide jointly refined by single-crystal XRD, Raman scattering spectroscopy and DFT assessment of hydrogen-bond network features [J ] . Acta Crystallographica Section E: Crystallographic Communications , 2021 , 77 : 692 - 695 .
SCHLAMADINGER D E , DASCHBACH M M , GOKEL G W , et al . UV resonance Raman study of cation-π interactions in an indole crown ether [J ] . Journal of Raman Spectroscopy , 2011 , 42 ( 4 ): 633 - 638 .
WU Y H , WANG Q , CHEN Y T , et al . Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically [J ] . Energy & Environmental Science , 2022 , 15 ( 11 ): 4700 - 4709 .
LAN Y S , TONG M M , YANG Q Y , et al . Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide [J ] . CrystEngComm , 2017 , 19 ( 33 ): 4920 - 4926 .
LAMBERTS K , HANDELS P , ENGLERT U , et al . Stabilization of polyiodide chains via anion···anion interactions: Experiment and theory [J ] . CrystEngComm , 2016 , 18 ( 21 ): 3832 - 3841 .
CAVALLO G , METRANGOLO P , MILANI R , et al . The halogen bond [J ] . Chemical Reviews , 2016 , 116 ( 4 ): 2478 - 2601 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution