浏览全部资源
扫码关注微信
1.内蒙古工业大学 资源与环境工程学院 环境污染控制与修复内蒙古自治区高等学校重点实验室,内蒙古 呼和浩特 010051
2.内蒙古自治区生态环境低碳发展中心,内蒙古 呼和浩特 010050
3.呼和浩特市生态环境监控中心,内蒙古 呼和浩特 010010
Received:05 July 2024,
Revised:22 August 2024,
Published:25 April 2025
移动端阅览
杨国庆,杨桔材,律严励等.绿氢耦合煤制甲醇碳减排量核算及竞争力分析[J].低碳化学与化工,2025,50(04):107-112.
YANG Guoqing,YANG Jucai,LV Yanli,et al.Carbon emission reduction accounting and competitiveness analysis of green hydrogen-coupled coal-to-methanol process[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):107-112.
杨国庆,杨桔材,律严励等.绿氢耦合煤制甲醇碳减排量核算及竞争力分析[J].低碳化学与化工,2025,50(04):107-112. DOI: 10.12434/j.issn.2097-2547.20240288.
YANG Guoqing,YANG Jucai,LV Yanli,et al.Carbon emission reduction accounting and competitiveness analysis of green hydrogen-coupled coal-to-methanol process[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):107-112. DOI: 10.12434/j.issn.2097-2547.20240288.
煤制甲醇生产过程伴随着大量二氧化碳排放,绿氢耦合煤化工技术可以有效降低煤化工过程碳排放,但其中存在的技术问题和经济效益未经有效评估。基于调研数据,构建了绿氢耦合煤制甲醇工艺二氧化碳排放的核算体系,并分析了绿氢耦合技术在低碳排放背景下的技术竞争力。结果表明,绿氢耦合煤制甲醇工艺通过再生能源制氢、制氧,可省去原有CO变换、空气分离工序。以某60 × 10
4
t/a煤制甲醇项目为例,采用传统煤制甲醇工艺二氧化碳排放量为205.94 × 10
4
t/a,采用绿氢耦合煤制甲醇工艺二氧化碳排放量为60.94 × 10
4
t/a,二氧化碳排放量相较减少了约70%。随着国家对新能源产业的大力支持,以及能源转型战略的快速推进,当绿电价格下降到0.15 CNY/(kW·h),绿氢耦合煤制甲醇产品成本约为2883.33 CNY/t,与传统工艺产品成本相当。若未来电价持续走低并辅以碳税征收,绿氢耦合煤制甲醇工艺的经济优势将逐步体现。本研究可为“双碳”目标下煤化工行业实现净零碳排放提供参考。
The coal-to-methanol production process is accompanied by significant carbon dioxide (CO
2
) emissions. Green hydrogen-coupled coal chemical technology can effectively reduce carbon emissions in coal chemical processes
yet the associated technical challenge
s and economic benefits have not been adequately assessed. Based on survey data
an accounting system for CO
2
emissions in the green hydrogen-coupled coal-to-methanol process was established and the technological competitiveness of green hydrogen coupling under the low-carbon emission context was analyzed. The results indicate that the green hydrogen-coupled coal-to-methanol process
utilizing renewable energy for hydrogen and oxygen production
eliminates the need for the original CO conversion and air separation steps. For a 60 × 10
4
t/a coal-to-methanol project
the CO
2
emissions of the traditional coal-to-methanol process amount to 205.94 × 10
4
t/a
whereas the green hydrogen-coupled process reduces emissions to 60.94 × 10
4
t/a
a reduction of approximately 70%. With strong national support for the renewable energy industry and rapid advancement of the energy transition strategy
when the price of green electricity decreases to 0.15 CNY/(kW·h)
the cost of green hydrogen-coupled coal-to-methanol production is approximately 2883.33 CNY/t
comparable to the cost of traditional processes. If electricity prices continue to decline and are accompanied by carbon tax implementation
the economic advantages of the green hydrogen-coupled coal-to-methanol process will gradually emerge. This study can provide a reference for achieving net-zero carbon emissions in the coal chemical industry under the “carbon peaking and carbon neutrality” goals.
YANG Q C , LI X F , YANG Q , et al . Opportunities for CO 2 utilization in coal to green fuel process: Optimal design and performance evaluation [J ] . ACS Sustainable Chemistry & Engineering , 2020 , 8 ( 3 ): 1329 - 1342 .
HOSSEINI S E , WAHID M A . Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development [J ] . Renewable and Sustainable Energy Reviews , 2016 , 57 ( 6 ): 850 - 866 .
WANG D L , MENG W L , ZHOU H R , et al . Novel coal-to-methanol process with near-zero carbon emission: Pulverized coal gasification-integrated green hydrogen process [J ] . Journal of Cleaner Production , 2022 , 339 ( 3 ): 130500 .
LIU G J , LI Z , WANG M H , et al . Energy savings by co-production: A methanol/electricity case study [J ] . Applied Energy , 2010 , 87 ( 9 ): 2854 - 2859 .
XIANG D , QIAN Y , MAN Y , et al . Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process [J ] . Applied Energy , 2014 , 113 ( 9 ): 639 - 647 .
QIN Z , ZHAI G F , WU X M , et al . Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment [J ] . Energy Conversion and Management , 2016 , 124 ( 7 ): 168 - 179 .
LIU Y G , LI G X , CHEN Z R , et al . Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment [J ] . Energy , 2020 , 204 ( 4 ): 117 - 128 .
QIN Z , TANG Y T , ZHANG Z X , et al . Techno-economic-environmental analysis of coal-based methanol and power poly-generation system integrated with biomass co-gasification and solar based hydrogen addition [J ] . Energy Conversion and Management , 2021 , 228 ( 8 ) : 176 - 183 .
QIAN Y , MAN Y , PENG L J , et al . Integrated process of coke-oven gas tri-reforming and coal gasification to methanol with high carbon utilization and energy efficiency [J ] . Industrial & Engineering Chemistry Research , 2015 , 54 ( 9 ): 2519 - 2525 .
MARTIN M . Methodology for solar and wind energy chemical storage facilities design under uncertainty: Methanol production from CO 2 and hydrogen [J ] . Computers & Chemical Engineering , 2016 , 92 ( 11 ): 43 - 54 .
SHIH C F , ZHANG T , LI J H , et al . Powering the future with liquid sunshine [J ] . Joule , 2018 , 2 ( 10 ): 1925 - 1949 .
MARTÍN M , GROSSMANN I E . Optimal integration of renewable based processes for fuels and power production: Spain case study [J ] . Applied Energy , 2018 , 213 ( 4 ): 595 - 610 .
赵广立 . 中国科学院院士李灿: “液态阳光”产业化脚步渐近 [N ] . 中国科学报 , 2024-05-16 (003).
ZHAO G L . Li Can, Academician of the Chinese Academy of Sciences: “Liquid Sunshine” industrialization steps are approaching [N ] . Science Times , 2024-05-16 (003).
CHEN Q Q , GU Y , TANG Z Y , et al . Comparative environmental and economic performance of solar energy integrated methanol production systems in China [J ] . Energy Conversion and Management , 2019 , 187 ( 12 ): 63 - 75 .
张婷婷 , 戚萌 , 孙龙珠 , 等 . 大规模风光发电制甲醇工艺的灵活运行策略与成本优化 [J ] . 现代化工 , 2023 , 43 ( 9 ): 200 - 207 .
ZHANG T T , QI M , SUN L Z , et al . Flexible operation strategy and cost optimization of methanol production process driven by large-scale solar and wind power [J ] . Modern Chemical Industry , 2023 , 43 ( 9 ): 200 - 207 .
王明华 . 绿氢耦合现代煤化工发展路径研究 [J ] . 中国煤炭 , 2023 , 49 ( 5 ): 102 - 107 .
WANG M H . Research on the development path of modern coal chemical industry coupled by green hydrogen [J ] . China Coal , 2023 , 49 ( 5 ): 102 - 107 .
唐宏青 . 我设计的煤化工绿氢路线 [J ] . 中国石油和化工产业观察 , 2021 , ( 6 ): 64 .
TANG H Q . I designed the green hydrogen route for coal chemical industry [J ] . China Petroleum and Chemical Industry Monitor , 2021 , ( 6 ): 64 .
程一步 . 低碳甲醇燃料全生命周期碳排分析 [J ] . 石油石化绿色低碳 , 2023 , 8 ( 1 ): 9 - 16 .
CHEN Y B . Lifecycle carbon emission analysis of low-carbon methanol fuel [J ] . Petroleum and Petrochemical Green Low-Carbon , 2023 , 8 ( 1 ): 9 - 16 .
LIU F Q , ZHAO F Q , LIU Z W , et al . China’s electric vehicle deployment: Energy and greenhouse gas emission impacts [J ] . Energies , 2018 , 11 ( 4 ): 231 - 239 .
孟春江 . 中国煤化工温室气体排放核算研究 [D ] . 北京 : 清华大学 , 2014 .
MENG C J . Research on greenhouse gas emission accounting for coal chemical industry in China [D ] . Beijing : Tsinghua University , 2014 .
ZHANG R , WANG Y , GASPARD P , et al . The oscillating Fischer-Tropsch reaction [J ] . Science , 2023 , 382 ( 6666 ): 99 - 103 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution