浏览全部资源
扫码关注微信
1.中国石油化工股份有限公司茂名分公司,广东 茂名 525099
2.中国石油化工股份有限公司石油化工科学研究院有限公司,北京 100083
Received:09 May 2024,
Revised:30 June 2024,
Published:25 February 2025
移动端阅览
谢志翔,李吉广.浆态床渣油加氢技术研究进展[J].低碳化学与化工,2025,50(02):78-87.
XIE Zhixiang,LI Jiguang.Research progress on slurry bed residue hydrocracking technology[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):78-87.
谢志翔,李吉广.浆态床渣油加氢技术研究进展[J].低碳化学与化工,2025,50(02):78-87. DOI: 10.12434/j.issn.2097-2547.20240201.
XIE Zhixiang,LI Jiguang.Research progress on slurry bed residue hydrocracking technology[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):78-87. DOI: 10.12434/j.issn.2097-2547.20240201.
浆态床渣油加氢技术是炼厂转型发展采用的重要手段,是渣油绿色高效利用的主要途径。其技术核心是确保沥青质等稠环芳烃高效转化,同时抑制缩合生焦,具体可通过反应条件优化、高性能催化剂开发、装置及流程优化等进行强化。近年来,浆态床渣油加氢技术发展迅速,并实现了工业化应用。从反应条件优化、高性能催化剂开发、装置及流程优化等角度,对浆态床渣油加氢技术研究进展进行了综述。相关研究通过对调和组分、反应温度和空速、催化剂、装置及流程等的优化,不同程度改善了高价值组分收率、技术经济性和装置操作周期。
Slurry bed residue hydrocracking technology is an important means for refinery transformation and development
and a major approach for the green and efficient utilization of residue oil. The core of the technology is to ensure the efficient conversion of asphaltenes and other polycyclic aromatic hydrocarbons
while inhibiting coke formation through condensation
which can be enhanced by optimizing reaction conditions
developing high-performance catalysts
and improving the equipment and processes. In recent years
slurry bed residue hydrocracking technology has developed rapidly and has been applied in industrial production. The research progress was summarized from the perspectives of reaction condition optimization
high-performance catalyst development
and equipment and process optimization. Through the optimization of blending components
reaction temperature and space velocity
catalysts
equipment and processes
relevant studies have achieved varying degrees of improvement in the yield of high-value components
the techno-economic performance
and the operating cycle of the equipment.
邵志才 . 浆态床渣油加氢技术现状与展望 [J ] . 石油炼制与化工 , 2022 , 53 ( 11 ): 17 - 23 .
SHAO Z C . Status and prospect of slurry bed residue hydyocracking technology [J ] . Petroleum Processing and Petrochemicals , 2022 , 53 ( 11 ): 17 - 23 .
李雪静 , 黎德晟 , 李家民 . 渣油加氢技术的发展状况 [J ] . 石化技术 , 2002 , 9 ( 3 ): 172 - 177 .
LI X J , LI D S , LI J M . Development of hydrogenation of the residue [J ] . Petrochemical Industry Technology , 2002 , 9 ( 3 ): 172 - 177 .
RANA M S , SAMANO V , ANCHEYTA J , et al . A review of recent advances on process technologies for upgrading of heavy oils and residua [J ] . Fuel , 2007 , 86 ( 9 ): 1216 - 1231 .
PRAJAPATI P , KOHLI K , MAITY S K . Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review [J ] . Fuel , 2021 , 288 : 119686 .
GIUSEPPE B , GIACOMO R , ALBERTO L , et al . Hydroconversion of heavy residues in slurry reactors: Developments and perspectives [J ] . Journal of Catalysis , 2013 , 308 : 189 - 200 .
王明进 , 童凤丫 . 浆态床渣油加氢催化剂研究进展 [J ] . 工业催化 , 2015 , 23 ( 9 ): 659 - 665 .
WANG M J , TONG F Y . Development in the catalysts for residual oil hydrocraking in slurry-bed [J ] . Industrial Catalysis , 2015 , 23 ( 9 ): 659 - 665 .
姚国欣 . CLG的渣油悬浮床加氢裂化新技术 [J ] . 中外能源 , 2016 , 21 ( 12 ): 60 - 66 .
YAO G X . CLG’s new residum suspended bed hydrocracking technology [J ] . Sino-Global Energy , 2016 , 21 ( 12 ): 60 - 66 .
吴青 . 悬浮床加氢裂化—劣质重油直接深度高效转化技术 [J ] . 炼油技术与工程 , 2014 , 44 ( 2 ): 1 - 9 .
WU Q . Suspended-bed hydrocracking process—A deep high-efficiency conversion process in rapid development for processing low-quality heavy oils [J ] . Petroleum Refinery Engineering , 2014 , 44 ( 2 ): 1 - 9 .
中国石化石油化工科学研究院科研处 .“ 2 Mt/a多产改质油的劣质渣油催化临氢热转化(RMAC)工艺包开发”通过技术评审 [J ] . 石油炼制与化工 , 2018 , 49 ( 2 ): 34 .
Research Department of SINOPEC Petrochemical Research Institute . The development of 2 Mt/a low-quality residue upgrading to maximize asphaltene conversion (RMAC) process package for high-yield modified oil has passed technical review [J ] . Petroleum Processing and Petrochemicals , 2018 , 49 ( 2 ): 34 .
蔡新恒 , 董明 , 侯焕娣 , 等 . 沥青质组分轻质化转化的分子结构基础探索 [J ] . 石油学报(石油加工) , 2022 , 38 ( 3 ): 535 - 543 .
CAI X H , DONG M , HOU H D , et al . Exploration of the molecular structure basis for weight-reduction conversion of asphaltene fractions [J ] . Acta Petrolei Sinica (Petroleum Processing Section) , 2022 , 38 ( 3 ): 535 - 543 .
杨涛 , 张生娟 , 戴鑫 , 等 . 渣油浆态床加氢反应过程中沥青质微观结构的动态变化 [J ] . 石油炼制与化工 , 2021 , 52 ( 4 ): 93 - 98 .
YANG T , ZHANG S J , DAI X , et al . Dynamic change of asphaltene microstructure during residue slurry-bed hydrocracking [J ] . Petroleum Processing and Petrochemicals , 2021 , 52 ( 4 ): 93 - 98 .
YANG T , DENG W A , ZHU Y H , et al . The influences of compositional and structural evolutions of asphaltenes on coking behavior during slurry-bed hydrocracking [J ] . Fuel , 2022 , 325 : 124839 .
侯焕娣 , 赵毅 , 王子军 , 等 . 不同氢源对十二烷基芘热裂化反应的影响及作用机理 [J ] . 石油学报(石油加工) , 2021 , 37 ( 3 ): 549 - 555 .
HOU H D , ZHAO Y , WANG Z J , et al . Effects and mechanisms of different hydrogen sources on dodecyi pyrene thermal cracking reactions [J ] . Acta Petrolei Sinica (Petroleum Processing Section) , 2021 , 37 ( 3 ): 549 - 555 .
WANG Y F , LU J M , ZHANG X , et al . Molecular transformation of heavy oil during slurry phase hydrocracking process: A comparison between thermal cracking and hydrocracking [J ] . Fuel , 2023 , 351 : 128981 .
周振宇 . 浆态床渣油加氢装置生产运行的分析和对策 [J ] . 中外能源 , 2023 , 28 ( 12 ): 59 - 65 .
ZHOU Z Y . Analysis and countermeasures for operation of slurry bed residue hydrogenation unit [J ] . Sino-Global Energy , 2023 , 28 ( 12 ): 59 - 65 .
周振宇 , 景晓 , 岳志华 , 等 . 浆态床渣油加氢装置掺炼乙烯焦油的运行分析 [J ] . 石油炼制与化工 , 2023 , 54 ( 9 ): 72 - 76 .
ZHOU Z Y , JING X , YUE Z H , et al . Operation analysis of alurry-bed residue hydrotreating unit blending ethylene tar [J ] . Petroleum Processing and Petrochemicals , 2023 , 54 ( 9 ): 72 - 76 .
PHAM D V , NGUYEN N T , KANG K H , et al . Comparative study of single- and two-stage slurry-phase catalytic hydrocracking of vacuum residue for selective conversion of heavy oil [J ] . Catalysis Today , 2024 , 426 : 114391 .
LIM S H , GO K S , NHO S N , et al . Effect of reaction temperature and time on the products and asphaltene dispersion stability in slurry-phase hydrocracking of vacuum residue [J ] . Fuel , 2018 , 234 : 305 - 311 .
PHAM H H , LIM S H , GO K S , et al . The effect of recycle stream on slurry-phase hydrocracking of vacuum residue: An experimental and modeling approach [J ] . Journal of Industrial and Engineering Chemistry , 2024 , 129 : 555 - 567 .
王晨 , 杨超 , 贾未鸣 , 等 . 浆态床加氢裂化有机钼催化剂研究进展 [J ] . 当代化工 , 2023 , 52 ( 3 ): 708 - 712 .
WANG C , YANG C , JIA W M , et al . Research progress of organic molybdenum catalyst for slurry bed hydrocracking [J ] . Contemporary Chemical Industry , 2023 , 52 ( 3 ): 708 - 712 .
侯焕娣 , 赵毅 , 董明 , 等 . 分散型催化剂作用下噻吩类化合物的临氢转化规律 [J ] . 石油学报(石油加工) , 2021 , 37 ( 2 ): 281 - 288 .
HOU H D , ZHAO Y , DONG M , et al . Hydro-thermal cracking transformation of thiophene compound with dispersed catalys [J ] . Acta Petrolei Sinica (Petroleum Processing Section) , 2021 , 37 ( 2 ): 281 - 288 .
侯小敏 , 王轲 , 徐茜 , 等 . 浆态床渣油加氢物料中钼含量的测定方法研究 [J ] . 石油炼制与化工 , 2022 , 53 ( 11 ): 123 - 127 .
HOU X M , WANG K , XU Q , et al . Determination method of molybdenum content in slurry bed residue hydrocracking materials [J ] . Petroleum Processing and Petrochemicals , 2022 , 53 ( 11 ): 123 - 127 .
KANG K H , NGUYEN N T , PHAM D V , et al . Ligand structure effect in oil-soluble phosphorus-containing molybdenum precursors for slurry-phase hydrocracking of heavy oil [J ] . Journal of Catalysis , 2021 , 402 : 194 - 207 .
王廷 , 侯焕娣 , 董明 , 等 . 浆态床油溶性加氢催化剂前体的研究进展 [J ] . 化工进展 , 2020 , 39 ( 9 ): 3669 - 3676 .
WANG T , HOU H D , DONG M , et al . Research progress on oil-soluble catalysts precursor for slurry-phase hydrocracking of residue [J ] . Chemical Industry and Engineering Progress , 2020 , 39 ( 9 ): 3669 - 3676 .
于祺 , 李瑞峰 , 田宏宇 , 等 . 浆态床渣油加氢油溶性催化剂研究进展 [J ] . 现代化工 , 2021 , 41 ( 4 ): 33 - 37 .
YU Q , LI R F , TIAN H Y , et al . Research progress on oil-soluble catalysts for slurry-bed hydrogenation of residual oil [J ] . Modern Chemical Industry , 2021 , 41 ( 4 ): 33 - 37 .
侯焕娣 , 董明 , 王子军 . 不同类型分散型催化剂对渣油催化临氢热转化过程的影响研究望 [J ] . 石油炼制与化工 , 2021 , 52 ( 10 ): 157 - 162 .
HOU H D , DONG M , WANG Z J . Effects of different types of dispersing catalysts on catalytic hydrothermal conversion of residue [J ] . Petroleum Processing and Petrochemicals , 2021 , 52 ( 10 ): 157 - 162 .
武世伟 , 王廷 , 侯焕娣 , 等 . 分散型浆态床渣油加氢双金属催化剂研究进展 [J ] . 化工进展 , 2022 , 41 ( 10 ): 5406 - 5415 .
WU S W , WANG T , HOU H D , et al . Research progress of dispersed bimetallic catalysts for slurry-phase hydrocracking of residue [J ] . Chemical Industry and Engineering Progress , 2022 , 41 ( 10 ): 5406 - 5415 .
RAWAT A , DHAKLA S , TYAGI L , et al . Direct slurry-phase hydrocracking of crude oil using trimetallic nanocatalyst [J ] . Fuel , 2022 , 330 : 125448 .
SUN G X , LIU D Y , LI M , et al . Atomic coordination structural dynamic evolution of single-atom Mo catalyst for promoting H 2 activation in slurry phase hydrocracking [J ] . Science Bulletin , 2023 , 68 : 503 - 515 .
HU X B , WANG J B , WANG T H , et al . Synthesis and performance of mesoporous iron oxide in vacuum residue slurry-phase hydrocracking [J ] . Fuel , 2023 , 332 : 126063 .
FENG W W , ZHENG B , CUI Q Y , et al . Influence of ASA composition on its supported Mo catalyst performance for the slurry-phase hydrocracking of vacuum residue [J ] . Fuel , 2022 , 324 : 124628 .
FENG W W , QIAN Y G , WANG T H , et al . Impacts of support properties on the vacuum residue slurry-phase hydrocracking performance of Mo catalysts [J ] . Petroleum Science , 2023 , 20 : 2575 - 2584 .
王廷 , 侯焕娣 , 龙军 . 分散型渣油加氢催化剂硫化的研究进展 [J ] . 现代化工 , 2021 , 41 ( 3 ): 68 - 73 .
WANG T , HOU H D , LONG J . A review on sulfurization of dispersed catalyst for residue hydrotreating [J ] . Modern Chemical Industry , 2021 , 41 ( 3 ): 68 - 73 .
彭芳 , 许可 . 硫化剂结构对油溶性Mo基催化剂硫化的影响 [J ] . 石油炼制与化工 , 2024 , 55 : 13 - 18 .
PENG F , XU K . Effect of structures of sulfurization agents on sulfurization of oil soluble Mo based catalysts [J ] . Petroleum Processing and Petrochemicals , 2024 , 55 : 13 - 18 .
回军 , 孙浩程 , 陈俊宇 . 浆态床尾油资源化利用技术研究进展 [J ] . 当代化工 , 2024 , 53 ( 1 ): 233 - 236 .
HUI J , SUN H C , CHEN J Y . Research progress in resource utilization technology of slurry bed tail oil research progress in resource utilization technology of slurry bed tail oil [J ] . Contemporary Chemical Industry , 2024 , 53 ( 1 ): 233 - 236 .
许可 , 侯焕娣 , 申海平 , 等 . 尾油中废催化剂金属组分的回收方法 : 111100987B [P ] . 2022-06-24 .
XU K , HOU H D , SHEN H P , et al . Recovery methods for metal components in spent catalysts from tail oil : 111100987B [P ] . 2022-06-24 .
许可 , 侯焕娣 , 董明 , 等 . 一种气化灰渣中有价金属的回收方法 : 114480857A [P ] . 2022-05-13 .
XU K , HOU H D , DONG M , et al . A method for recovering valuable metals from gasification ash : 114480857A [P ] . 2022-05-13 .
LIM S H , GO K S , KWON E H , et al . Change of physical properties with the slurry-phase hydrocracking reaction of vacuum residue [J ] . Journal of Industrial and Engineering Chemistry , 2021 , 98 : 425 - 434 .
马树刚 , 卢竟蔓 , 苏武 , 等 . 基于微气泡强化的浆态床反应器流体力学特性 [J ] . 石油化工 , 2023 , 52 ( 11 ): 1544 - 1550 .
MA S G , LU J M , SU W , et al . Fluid mechanics characteristics of microbubble enhanced slurry bed reactor [J ] . Petrochemical Technology , 2023 , 52 ( 11 ): 1544 - 1550 .
LIM S H , KWON E H , GO K S , et al . Estimation of the gas hold up and flow regime of a bubble column reactor for the slurry phase hydrocracking of heavy oil [J ] . Fuel , 2023 , 338 : 127190 .
PHAM H H , LIM S H , GO K S , et al . Modeling and simulation of a bench-scale bubble column reactor for slurry phase hydrocracking of vacuum residue [J ] . Fuel , 2022 , 310 : 122481 .
沈家龙 . 浆态床渣油加氢装置的节能研究 [J ] . 山东化工 , 2017 , 46 ( 9 ): 82 - 84 .
SHEN J L . Study on energy saving of slurry bed residuum hydroprocessing unit [J ] . Shandong Chemical Industry , 2017 , 46 ( 9 ): 82 - 84 .
刘璐 . 浆态床渣油加氢装置常压塔的配管设计 [J ] . 石油化工设计 , 2023 , 40 ( 3 ): 56 - 59 .
LIU L . Piping design of atmospheric column in slurry bed residue hydrocracking unit [J ] . Petrochemical Design , 2023 , 40 ( 3 ): 56 - 59 .
李贺 . 浆态床渣油加氢长周期运行问题及优化措施 [J ] . 石化技术 , 2023 , 30 ( 5 ): 190 - 192 .
LI H . Long term operation problems and optimization measures for residue slurry bed hydrocracking [J ] . Petrochemical Industry Technology , 2023 , 30 ( 5 ): 190 - 192 .
吴群英 , 孙丽丽 , 祖超 , 等 . 新型千万吨级炼油厂加工方案的研究 [J ] . 石油炼制与化工 , 2020 , 51 ( 7 ): 86 - 92 .
WU Q Y , SUN L L , ZU C , et al . Study on processing routes for new refinery with 10 Mt/a capacity [J ] . Petroleum Processing and Petrochemicals , 2020 , 51 ( 7 ): 86 - 92 .
关立涛 , 陈博 . 浆态床渣油加氢机理与全局资源优化耦合模型研究与应用 [J ] . 炼油技术与工程 , 2023 , 53 ( 1 ): 22 - 25 .
GUAN L T , CHEN B . Study and application of coupling model between slurry bed residue hydrogenation mechanism and global resource optimization [J ] . Petroleum Refinery Engineering , 2023 , 53 ( 1 ): 22 - 25 .
申海平 , 董明 , 侯焕娣 , 等 . 劣质渣油清洁高效加工技术开发 [J ] . 石油炼制与化工 , 2021 , 52 ( 10 ): 136 - 143 .
SHEN H P , DONG M , HOU H D , et al . Development of clean and efficient processing technology for inferior residue [J ] . Petroleum Processing and Petrochemicals , 2021 , 52 ( 10 ): 136 - 143 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution