浏览全部资源
扫码关注微信
南京师范大学 能源与机械工程学院,江苏 南京 210023
Received:29 April 2024,
Revised:28 May 2024,
Published:25 February 2025
移动端阅览
李德强,张琦,淦思瑄等.化学吸收法直接空气碳捕集技术研究进展[J].低碳化学与化工,2025,50(02):113-126.
LI Deqiang,ZHANG Qi,GAN Sixuan,et al.Research progress on chemical absorption direct air carbon caputure technology[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):113-126.
李德强,张琦,淦思瑄等.化学吸收法直接空气碳捕集技术研究进展[J].低碳化学与化工,2025,50(02):113-126. DOI: 10.12434/j.issn.2097-2547.20240186.
LI Deqiang,ZHANG Qi,GAN Sixuan,et al.Research progress on chemical absorption direct air carbon caputure technology[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):113-126. DOI: 10.12434/j.issn.2097-2547.20240186.
直接空气碳捕集(DAC)技术是一种具有良好应用前景的负碳排放技术,而化学吸收法DAC技术是该领域的研究热点之一。针对化学吸收法DAC技术的二氧化碳吸收剂开发、二氧化碳吸收塔改进和二氧化碳吸收工艺优化等方面的研究进展进行了综述。介绍了强碱溶液、胺溶液、氨基酸盐溶液和离子液体作为二氧化碳吸收剂的反应过程和反应机理,阐述了层流塔、开孔泡沫交换器、板式空气接触器和生物质碳材料界面反应器等二氧化碳吸收塔的运行性能和改造情况,分析了余热利用和能源引入等工艺优化方案对化学吸收法DAC系统的影响,总结了化学吸收法DAC系统的技术经济性和碳效率分析研究结果,并对化学吸收法DAC技术未来的发展进行了展望。
Direct air carbon capture (DAC) technology is a negative carbon emission technology with good application prospect
and chemical absorption DAC technology is one of the research hotspots in the field. The development of carbon dioxide absorbent
improvement of carbon dioxide absorption tower and optimization of carbon dioxide absorption process for chemical absorption DAC technology were reviewed. The reaction processes and mechanisms of strong alkali solutions
amine solutions
amino acid salt solutions and ionic liquids as carbon dioxide absorbents were introduced. The operation performances and improvements of carbon dioxide absorption towers
such as laminar flow tower
open-cell foam exchanger
plate air contactor and biomass carbon interfacial reactor were described. The effects of waste heat utilization and energy introduction on chemical absorption DAC system were analyzed. The analysis results of technical economy and carbon efficiency of chemical absorption DAC system were summarized
and the future developments of chemical absorption DAC technology were prospected.
联合国新闻网 . 第28届联合国气候变化大会在迪拜开幕,就损失和损害基金达成突破性协议 [EB/OL ] . 迪拜 : 联合国新闻网 , 2023 [ 2024-01-29 ] . https://news.un.org/zh/story/2023/11/1124462 https://news.un.org/zh/story/2023/11/1124462 .
United Nations News Network . The 28th United Nations Climate Change Conference has opened in Dubai with a breakthrough agreement on a loss and damage fund [EB/OL ] . Dubai : United Nations News Network , 2023 [ 2024-01-29 ] . https://news.un.org/zh/story/2023/11/1124462 https://news.un.org/zh/story/2023/11/1124462 .
宋珂琛 , 崔希利 , 邢华斌 . 二氧化碳直接空气捕集材料与技术研究进展 [J ] . 化工进展 , 2022 , 41 ( 3 ): 1152 - 1162 .
SONG K C , CUI X L , XING H B . Progress on direct air capture of carbon dioxide [J ] . Chemical Industry and Engineering Progress , 2022 , 41 ( 3 ): 1152 - 1162 .
AGENC I R E . Energy technology perspectives 2023 [R ] . Paris : IEA , 2023 .
MINX J C , LAMB W F , CALLAGHA M W , et al . Negative emissions—Part 1: Research landscape and synthesis [J ] . Environmental Research Letters , 2018 , 13 ( 6 ): 2 - 30 .
王涛 , 董昊 , 侯成龙 , 等 . 直接空气捕集CO 2 吸附剂综述 [J ] . 浙江大学学报(工学版) , 2022 , 56 ( 3 ): 462 - 475 .
WANG T , DONG H , HOU C L , et al . Review of CO 2 direct air capture adsorbents [J ] . Journal of Zhejiang University (Engineering Science) , 2022 , 56 ( 3 ): 462 - 475 .
吴禹松 . 用于空气二氧化碳捕集的多孔树脂吸附剂成型及性能研究 [D ] . 杭州 : 浙江大学 , 2020 .
WU Y S . Research on formation and performance of porous resin adsorbent for direct air capture of CO 2 [D ] . Hangzhou : Zhejiang University , 2020 .
侯成龙 . 季铵修饰聚合物的制备及空气二氧化碳捕集性能研究 [D ] . 杭州 : 浙江大学 , 2022 .
HOU C L . Synthesis of quaternary ammonium functionalized polymers and their application in direct air capture [D ] . Hangzhou : Zhejiang University , 2022 .
MIAO Y H , WANG Y Z , ZHU X C , et al . Minimizing the effect of oxygen on supported polyamine for direct air capture [J ] . Separation and Purification Technology , 2022 , 298 ( 12 ): 58 - 67 .
MIAO Y H , WANG Y , GE B , et al . Mixed diethanolamine and polyethyleneimine with enhanced CO(2) capture capacity from air [J ] . Advanced Science , 2023 , 10 ( 16 ): 22 - 32 .
廖昌建 , 张可伟 , 王晶 , 等 . 直接空气捕集二氧化碳技术研究进展 [J ] . 化工进展 , 2024 , 43 ( 4 ): 2031 - 2048 .
LIAO C J , ZHANG K W , WANG J , et al . Progress on direct air capture of carbon dioxide [J ] . Chemical Industry and Engineering Progress , 2024 , 43 ( 4 ): 2031 - 2048 .
SANDR K S B , JENNIFE B P , YANI M , et al . Direct atmospheric cryogenic carbon capture in cold climates [J ] . Carbon Capture Science & Technology , 2023 , 8 ( 17 ): 16 - 22 .
SHIGENOR F , ROMA S , TOYOK K . A new strategy for membrane-based direct air capture [J ] . Polymer Journal , 2021 , 53 ( 1 ): 111 - 119 .
QINGDIAN S , LOUIS L , PHILIPP K , et al . Electrochemical regeneration of spent alkaline absorbent from direct air capture [J ] . Environmental Science & Technology , 2020 , 54 ( 14 ): 8990 - 8998 .
FASIHI M , EFIMOVA O , BREYER C . Techno-economic assessment of CO 2 direct air capture plants [J ] . Journal of Cleaner Production , 2019 , 224 ( 18 ): 957 - 980 .
KEITH D W , GEOFFREY H , DAVID S A , et al . A process for capturing CO 2 from the atmosphere [J ] . Joule , 2018 , 2 ( 8 ): 1573 - 1594 .
LACKNER K S , ZIOCK H J , GRIMES P G . Carbon dioxide extraction from air: Is it an option? [J ] . Environmental Science & Technology , 1999 , 33 ( 77 ): 36 - 45 .
ZEMAN F , LACKNER K S . Capturing carbon dioxide directly from the atmosphere [J ] . Environmental Science & Technology , 2006 , 40 ( 2 ): 157 - 172 .
HOLMES G , KEITH D W . An air-liquid contactor for large-scale capture of CO 2 from air [J ] . Philosophical Transactions A Mathematical Physical Engineering Science , 2012 , 370 ( 1974 ): 4380 - 403 .
JIANG L , LIU W , WANG R Q , et al . Sorption direct air capture with CO 2 utilization [J ] . Progress in Energy and Combustion Science , 2023 , 95 ( 34 ): 33 - 66 .
MAHMOUDKHANI M , HEIDEL K R , FERREIRA J C , et al . Low energy packed tower and caustic recovery for direct capture of CO 2 from air [J ] . Energy Procedia , 2009 , 1 ( 1 ): 1535 - 1542 .
ANATOLY R , ANDREW M B , PROF D P S , et al . Alkalinity concentration swing for direct air capture of carbon dioxide [J ] . Chemistry Sustainability Energy Materials , 2021 , 14 ( 20 ): 4439 - 4453 .
ANATOLY R . Concentrating alkalinity for direct air capture of carbon dioxide: Using osmotic pressure for concentration and separation [D ] . Cambridge : Harvard University , 2023 .
BERGMAN A M . Using capacitive deionization for direct air capture of carbon dioxide: Theory and demonstration of the bicarbonate-enriched alkalinity concentration swing [D ] . Cambridge : Harvard University , 2023 .
SANZ-PEREEZ E S , MURDOCK C R , DIDAS S A , et al . Direct capture of CO 2 from ambient air [J ] . Chemical Reviews , 2016 , 116 ( 19 ): 11840 - 11876 .
SHI X , XIAO H , AZARABADI H , et al . Sorbents for the direct capture of CO 2 from ambient air [J ] . Angewandte Chemie International Edtion , 2020 , 59 ( 18 ): 6984 - 7006 .
LV B H , GUO B S , ZHOU Z M , et al . Mechanisms of CO 2 capture into monoethanolamine solution with different CO 2 loading during the absorption/desorption processes [J ] . Environmental Science & Technology , 2015 , 49 ( 17 ): 10728 - 10735 .
BARZAGLI F , GIORGI C , MANI F , et al . Screening study of different amine-based solutions as sorbents for direct CO 2 capture from air [J ] . ACS Sustainable Chemistry & Engineering , 2020 , 8 ( 37 ): 14013 - 14021 .
CUSTELCEAN R , WILLIAMS N J , GARRABRANT K A , et al . Direct air capture of CO 2 with aqueous amino acids and solid bis-iminoguanidines (BIGs) [J ] . Industrial & Engineering Chemistry Research , 2019 , 4 ( 52 ): 31 - 62 .
SEIPP C A , WILLIAMS N J , KIDDER M K , et al . CO 2 capture from ambient air by crystallization with a guanidine sorbent [J ] . Angewandte Chemie International Edtion , 2017 , 56 ( 4 ): 1042 - 1045 .
BRETHOME F M , WILLIAM N J , SEIPP C A , et al . Direct air capture of CO 2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power [J ] . Nature Energy , 2018 , 3 ( 7 ): 553 - 559 .
BENITO H D , MOYA C , GAZZANI M , et al . Direct air capture based on ionic liquids: From molecular design to process assessment [J ] . Chemical Engineering Journal , 2023 , 468 ( 15 ): 143 - 156 .
RECKER E A , GREEN M , SOLTANI M , et al . Direct air capture of CO 2 via ionic liquids derived from “waste” amino acids [J ] . ACS Sustainable Chemistry & Engineering , 2022 , 10 ( 36 ): 11885 - 11890 .
LACKNER K S . Capture of carbon dioxide from ambient air [J ] . The European Physical Journal Special Topics , 2009 , 176 ( 1 ): 93 - 106 .
HIKITA H , ASAI S , TAKATSUKA T . Absorption of carbon dioxide into aqueous sodium hydroxide and sodium carbonate-bicarbonate solutions [J ] . The Chemical Engineering Journal , 1976 , 11 ( 2 ): 131 - 141 .
ZEMAN F . Energy and material balance of CO 2 capture from ambient air [J ] . Environmental Science & Technology , 2007 , 41 ( 21 ): 7558 - 7563 .
PORTUGAL A F , SOUSA J M , MANGALHAES F D , et al . Solubility of carbon dioxide in aqueous solutions of amino acid salts [J ] . Chemical Engineering Science , 2009 , 64 ( 9 ): 1993 - 2002 .
金东玲 . NaOH/Ca(OH) 2 双循环直接空气碳捕集系统热经济性研究 [D ] . 南京 : 南京师范大学 , 2023 .
JIN D L . Thermal economy of NaOH/Ca(OH) 2 dual-cycle direct air carbon capture system [D ] . Nanjing : Nanjing Normal University , 2023 .
PARK S I , PARK H J , YANG H I , et al . Changes in CO 2 absorption efficiency of NaOH solution trap with temperature [J ] . Korean Journal of Soil Science and Fertilizer , 2017 , 50 ( 6 ): 554 - 561 .
ZEMAN F . Experimental results for capturing CO 2 from the atmosphere [J ] . AIChE Journal , 2008 , 54 ( 5 ): 1396 - 1399 .
JONGE M M J , DAEMEN J , LORIAUX J M , et al . Life cycle carbon efficiency of direct air capture systems with strong hydroxide sorbents [J ] . International Journal of Greenhouse Gas Control , 2019 , 80 ( 42 ): 25 - 31 .
AN K , AZHARUDDIN F , MCCOY S . The impact of climate on solvent-based direct air capture systems [J ] . Applied Energy , 2022 , 325 ( 14 ): 119 - 123 .
莱特 A B , 莱克纳 K S . 去除空气中的二氧化碳 : 101043929 [P ] . 2005-08-22 .
WRIGHT A B , LACKNER K S . Removal of carbon dioxide from air : 101043929 [P ] . 2005-08-22 .
莱特 A B , 莱克纳 K S , 彼得斯 E J . 从空气中去除二氧化碳 : 101128248 [P ] . 2006-02-02 .
WRIGHT A B , LACKNER K S , PETERS E J . Removal of carbon dioxide from the air : 101128248 [P ] . 2006-02-02 .
邢伟 , 徐汝隆 , 高贺同 , 等 . 专利视角下空气中直接捕集CO 2 技术发展分析 [J ] . 洁净煤技术 , 2023 , 29 ( 4 ): 86 - 97 .
XING W , XU R L , GAO H T , et al . Analysis of the development of direct capture of carbon dioxide in the air from patent perspective [J ] . Clean Coal Technology , 2023 , 29 ( 4 ): 86 - 97 .
HOLMES G , NOLD K , WALSH T , et al . Outdoor prototype results for direct atmospheric capture of carbon dioxide [J ] . Energy Procedia , 2013 , 37 ( 16 ): 6079 - 6095 .
张琦 , 李子龙 , 淦思瑄 , 等 . 一种直接空气碳捕集系统 : 117563392A [P ] . 2024-02-20 .
ZHANG Q , LI Z L , GAN S X , et al . A direct air carbon capture system : 117563392A [P ] . 2024-02-20 .
RENATA B , GIUSEPPE S , MARCO M . Process design and energy requirements for the capture of carbon dioxide from air [J ] . Chemical Engineering and Processing: Process Intensification , 2006 , 45 ( 12 ): 1047 - 1058 .
KIANI A , JIANG K , FERON P H M . Techno-economic assessment for CO 2 capture from air using a conventional liquid-based absorption process [J ] . Frontiers in Energy Research , 2020 , 9 ( 28 ): 8 - 21 .
SABATINO F , GRIMM A , GALLUCCI F , et al . A comparative energy and costs assessment and optimization for direct air capture technologies [J ] . Joule , 2021 , 5 ( 8 ): 2047 - 2076 .
LI C B , SHI H Q , CAO Y J , et al . Modeling and optimal operation of carbon capture from the air driven by intermittent and volatile wind power [J ] . Energy , 2015 , 87 ( 16 ): 201 - 211 .
NIKULSHINA V , GEBALD C , STEINFELD A . CO 2 capture from atmospheric air via consecutive CaO-carbonation and CaCO 3 -calcination cycles in a fluidized-bed solar reactor [J ] . Chemical Engineering Journal , 2009 , 146 ( 2 ): 244 - 248 .
NIKULSHINA V , NIKULSHIN V R . Exergy analysis of the solar thermochemical cycle for capturing CO 2 from air [J ] . International Journal of Exergy , 2010 , 7 ( 2 ): 243 - 254 .
SARAH D , ANDRE B . Life-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorption [J ] . Nature Energy , 2021 , 6 ( 2 ): 203 - 213 .
LACKNE K S , HABIB A . Buying down the cost of direct air capture [J ] . Industrial & Engineering Chemistry Research , 2021 , 66 ( 22 ): 8196 - 8208 .
KEITH D W , HA-DUONG M , STOLAROFF J K . Climate strategy with CO 2 capture from the air [J ] . Climatic Change , 2006 , 74 ( 13 ): 17 - 45 .
SUTHERLAND B R . Pricing CO 2 direct air capture [J ] . Joule , 2019 , 3 ( 7 ): 1571 - 1573 .
GENG Y H , LI C B , CAO Y J , et al . Cost analysis of air capture driven by wind energy under different scenarios [J ] . Journal of Modern Power Systems and Clean Energy , 2016 , 4 ( 2 ): 275 - 281 .
EISAMAN M D . Negative emissions technologies: The tradeoffs of air-capture economics [J ] . Joule , 2020 , 4 ( 3 ): 516 - 520 .
National Academies of Sciences . Engineering. Medicine: Negative emissions technologies and reliable sequestration: A research agenda [R ] . Washington DC : The National Academies Press , 2019 .
王珺瑶 , 何松 , 严家辉 , 等 . 直接空气碳捕集技术生命周期评价的研究进展及挑战 [J ] . 煤炭学报 , 2023 , 48 ( 7 ): 2748 - 2759 .
WANG J Y , HE S , YAN J H , et al . Research progress and challenges of life cycle assessment on direct air carbon capture technology [J ] . Journal of China Coal Society , 2023 , 48 ( 7 ): 2748 - 2759 .
GIESEN C V D , MEINRENKEN C J , KLEIJN R , et al . A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO 2 versus MEA-based postcombustion capture [J ] . Environmental Science & Technology , 2017 , 51 ( 2 ): 1024 - 1034 .
TERLOUW T , TREYER K , BAUER C , et al . Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources [J ] . Environmental Science & Technology , 2021 , 55 ( 16 ): 11397 - 11411 .
WANG J Y , LI S J , DENG S A , et al . Energetic and life cycle assessment of direct air capture: A review [J ] . Sustainable Production and Consumption , 2023 , 36 ( 17 ): 1 - 16 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution