
浏览全部资源
扫码关注微信
湖北民族大学 化学与环境工程学院,湖北 恩施 445000
高 超(2004—),本科生,研究方向为催化合成氨,E-mail:488721149@qq.com。
黄 佳(1987—),博士,讲师,研究方向为工业催化,E-mail:2023082@hbmzu.edu.cn;
姚林利(1993—),博士,讲师,研究方向光电化学,E-mail:2023079@hbmzu.edu.cn。
收稿:2025-05-26,
修回:2025-07-21,
纸质出版:2026-01-25
移动端阅览
高超,江显灿,杨阳等.h-BN载体对Cs-Ru/h-BN催化合成氨性能的影响[J].低碳化学与化工,2026,51(1):141-149.
GAO Chao,JIANG Xiancan,YANG Yang,et al.Effects of h-BN on catalytic performances of Cs-Ru/h-BN for ammonia synthesis[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):141-149.
高超,江显灿,杨阳等.h-BN载体对Cs-Ru/h-BN催化合成氨性能的影响[J].低碳化学与化工,2026,51(1):141-149. DOI: 10.12434/j.issn.2097-2547.20250244.
GAO Chao,JIANG Xiancan,YANG Yang,et al.Effects of h-BN on catalytic performances of Cs-Ru/h-BN for ammonia synthesis[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):141-149. DOI: 10.12434/j.issn.2097-2547.20250244.
NH
3
是一种重要的无机化工原料,也是一种理想的氢能载体。Ru基催化剂因其在低温低压下具有优于传统铁基催化剂的催化性能而备受关注。以4种商业六方氮化硼(
h
-BN)为载体负载Ru和助剂CsNO
3
,制备
了
x
Cs-Ru/
h
-BN(
x
=
n
(Cs)/
n
(Ru))催化剂。采用XRD、SEM、N
2
吸/脱附、H
2
-TPR和XPS等对载体和催化剂的理化性质进行了表征,考察了温和反应条件下催化剂的催化性能,并利用动力学分析了N
2
、H
2
和NH
3
的反应级数。结果表明,2Cs-Ru/
h
-BN-1表面Ru具有更高活性,能降低CsNO
3
分解和还原的温度,有利于Ru表面N
2
分子解离。动力学分析表明,2Cs-Ru/
h
-BN-1的H
2
反应级数为正,说明催化剂表面解离的氢原子更易迁移转化,这不仅能抑制催化剂氢中毒并稳定合成氨,还能释放出更多活性位点用于N
2
分子解离。在400 ℃、0.1 MPa和合成气流速60 mL/min(
V
(H
2
):
V
(N
2
) = 3:1)的条件下反应1 h,2Cs-Ru/h-BN-1的合成氨速率(以每克催化剂计)为3902 μmol/(g·h),且该催化剂可稳定运行48 h。
NH
3
is a crucial inorganic chemical raw material and an ideal hydrogen energy carrier. Ru-based catalysts have attracted significant attention due to their superior catalytic performances under low-temperature and low-pressure conditions compared to traditional iron-based catalysts.
x
Cs-Ru/
h
-BN (
x
=
n
(Cs)/
n
(Ru)) catalysts were synthesized by supporting Ru and the promoter CsNO
3
onto four commercial hexagonal boron nitride (
h-
BN) substrates. The physicochemical properties of the support and catalysts were characterized by XRD
SEM
N
2
adsorption/desorption
H
2
-TPR
and XPS. The catalytic performances for ammonia synthesis of four catalysts under mild conditions were evaluated
and the reaction orders of N
2
H
2
and NH
3
were analyzed through kinetics. The results show that the Ru species on the surface of 2Cs-Ru/
h-
BN-1 exhibits higher activity
effectively lowering the decomposition and reduction temperatures of CsNO
3
and thereby facilitating N
2
dissociation on the Ru active sites. Kinetic analysis reveals that the hydrogen reaction order of 2Cs-Ru/
h
-BN-1 is po
sitive
indicating that the dissociated hydrogen atoms on the catalyst surface are more prone to migration and transformation. This not only suppresses hydrogen poisoning of the catalyst to stabilize ammonia synthesis but also releases more active sites for the dissociation of N
2
molecules. Under the reaction conditions of 400 ℃
0.1 MPa and syngas flow rate of 60 mL/min (
V
(H
2
):
V
(N
2
) = 3:1)
2Cs-Ru/h-BN-1 achieves an ammonia synthesis rate (calculated by per gram of catalyst) of 3902 μmol/(g·h) after 1 h of reaction and can operate stably for 48 h.
LAN R , IRVINE J T S , TAO S W . Ammonia and related chemicals as potential indirect hydrogen storage materials [J ] . International Journal of Hydrogen Energy , 2012 , 37 ( 2 ): 1482 - 1494 .
KANDEMIR T , SCHUSTER M E , SENYSHYN A , et al . The Haber-Bosch process revisited: On the real structure and stability of “ammonia iron” under working conditions [J ] . Angewandte Chemie International Edition , 2013 , 52 ( 48 ): 12723 - 12726 .
高伟洁 , 郭淑静 , 张洪波 , 等 . 氮掺杂碳纳米管对其负载的Ru催化剂上合成氨的促进作用 [J ] . 催化学报 , 2011 , 32 ( 8 ): 1418 - 1423 .
GAO W J , GUO S J , ZHANG H B , et al . Enhanced ammonia synthesis activity of Ru supported on nitrogen-doped carbon nanotubes [J ] . Chinese Journal of Catalysis , 2011 , 32 ( 8 ): 1418 - 1423 .
YOU Z X , INAZU K , AIKA K I , et al . Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis [J ] . Journal of Catalysis , 2007 , 251 ( 2 ): 321 - 331 .
BROWN D E , EDMONDS T , JOYNER R W , et al . The genesis and development of the commercial BP doubly promoted catalyst for ammonia synthesis [J ] . Catalysis Letters , 2014 , 144 ( 4 ): 545 - 552 .
LIU H Z . Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge [J ] . Chinese Journal of Catalysis , 2014 , 35 ( 10 ): 1619 - 1640 .
LIN B Y , GUO Y J , LIN J D , et al . Deactivation study of carbon-supported ruthenium catalyst with potassium promoter [J ] . Applied Catalysis A: General , 2017 , 541 : 1 - 7 .
BIELAWA H , HINRICHSEN O , BIRKNER A , et al . The ammonia-synthesis catalyst of the next generation: Barium-promoted oxide-supported ruthenium [J ] . Angewandte Chemie International Edition , 2001 , 40 : 1061 - 1063 .
ROSOWSKI F , HORNUNG A , HINRICHSEN O , et al . Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics [J ] . Applied Catalysis A: General , 1997 , 151 ( 2 ): 443 - 460 .
YE T N , PARK S W , LU Y , et al . Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts [J ] . Journal of the American Chemical Society , 2020 , 142 : 14374 - 14383 .
ZHOU Y L , PENG X B , ZHANG T H , et al . Essential role of Ru-anion interaction in Ru-based ammonia synthesis catalysts [J ] . ACS Catalysis , 2022 , 12 : 7633 - 7642 .
WANG J Q , XU T Z , WANG W P , et al . Miracle in “white”: Hexagonal boron nitride [J ] . Small , 2025 , 21 ( 28 ): 2400489 .
HUANG J , PAN J J , YOU Z X , et al . Enhanced ammonia synthesis activity of Ru/Ba 5 Ta 4 O 15 catalyst by reduction of Ba 5 Ta 4 O 15 with CaH 2 [J ] . International Journal of Hydrogen Energy , 2022 , 47 : 28019 - 28024 .
KOJIMA R , AIKA K I . Rhenium containing binary catalysts for ammonia synthesis [J ] . Applied Catalysis A: General , 2001 , 209 : 317 - 325 .
ZHU S X , ZHANG Q , WANG W L , et al . Synthesis and electromagnetic wave absorption performance of h -BN composites [J ] . Journal of Materials Science: Materials in Electronics , 2025 , 36 : 50 .
李万珅 , 姚红蕊 , 王娜 . 六方氮化硼@TiO 2 /水性环氧涂层的制备及性能 [J ] . 精细化工 , 2025 , 42 ( 2 ): 306 - 312 .
LI W K , YAO H R , WANG N . Preparation and properties of h -BN@TiO 2 /waterborne epoxy coating [J ] . FINE CHEMICALS , 2025 , 42 ( 2 ): 306 - 312 .
HUANG J , YUAN M W , LI X Z , et al . Inhibited hydrogen poisoning for enhanced activity of promoters-Ru/Sr 2 Ta 2 O 7 nanowires for ammonia synthesis [J ] . Journal of Catalysis , 2020 , 389 : 556 - 565 .
HUANG J , YUAN M W , LI X Z , et al . Cs-promoted ruthenium catalyst supported on Ba 5 Ta 4 O 15 with abundant oxygen vacancies for ammonia synthesis [J ] . Applied Catalysis A: General , 2021 , 615 : 118058 .
QADIR K , JOO S H , MUN B S , et al . Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS [J ] . Nano Letters , 2012 , 12 : 5761 - 5768 .
DING J , POPA T , TANG J K , et al . Highly selective and stable Cu/SiO 2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol [J ] . Applied Catalysis B: Environmental , 2017 , 209 : 530 - 542 .
ROSSETTI I , MANGIARINI F , FORNI L . Promoters state and catalyst activation during ammonia synthesis over Ru/C [J ] . Applied Catalysis A: General , 2007 , 323 : 219 - 225 .
PARKER L A , CARTER J H , Dummer N F , et al . Ammonia decomposition enhancement by Cs promoted Fe/Al 2 O 3 catalysts [J ] . Catalysis Letters , 2020 , 150 : 3369 - 3376 .
AIKA K . Role of alkali promoter in ammonia synthesis over ruthenium catalysts—Effect on reaction mechanism [J ] . Catalysis Today , 2017 , 286 : 14 - 20 .
HANSEN T W , HANSEN P L , DAHL S , et al . Support effect and active sites on promoted ruthenium catalysts for ammonia synthesis [J ] . Catalysis Letters , 2002 , 84 ( 1/2 ): 7 - 12 .
CHEN M X , YUAN M W , LI J J , et al . Ammonia synthesis over Cs- or Ba-promoted ruthenium catalyst supported on strontium niobate [J ] . Applied Catalysis A: General , 2018 , 554 : 1 - 9 .
KITANO M , INOUE Y , YAMAZAKI Y , et al . Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store [J ] . Nature Chemistry , 2012 , 4 : 934 - 940 .
HARA M , KITANO M , HOSONO H , et al . Ru-Loaded C12A7:e—Electride as a catalyst for ammonia synthesis [J ] . ACS Catalysis , 2017 , 7 : 2313 - 2324 .
SATO K , IMAMURA K , KAWANO Y , et al . A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis [J ] . Chemical Science , 2017 , 8 : 674 - 679 .
OGAWA T , KOBAYASHI Y , MIZOGUCHI H , et al . High electron density on Ru in intermetallic YRu2: The application to catalyst for ammonia synthesis [J ] . The Journal of Physical Chemistry C , 2018 , 122 : 10468 - 10475 .
SIPORIN S E , DAVIS R J . Use of kinetic models to explore the role of base promoters on Ru/MgO ammonia synthesis catalysts [J ] . Journal of Catalysis , 2004 , 225 : 359 - 368 .
LEE K , WOO R , WOO H C , et al . Unraveling the role of MgO in the Ru-Ba/MgO catalyst for boosting ammonia synthesis: Comparative study of MgO and MgAlO x supports [J ] . Journal of Catalysis , 2024 , 434 : 115530 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533