
浏览全部资源
扫码关注微信
中石化石油化工科学研究院有限公司,北京 100083
任嘉豪(1994—),博士,助理研究员,研究方向为金属-有机框架材料的开发及其应用,E-mail:renjiahao.ripp@sinopec.com。
收稿:2025-05-06,
修回:2025-06-03,
纸质出版:2025-10-25
移动端阅览
任嘉豪,侯焕娣,董明等.面向轻烃分离的MOF材料设计:多尺度计算与机器学习应用进展[J].低碳化学与化工,2025,50(10):82-90.
REN Jiahao,HOU Huandi,DONG Ming,et al.Rational design of MOF for light hydrocarbon separation: Advances in multiscale computing and machine learning applications[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(10):82-90.
任嘉豪,侯焕娣,董明等.面向轻烃分离的MOF材料设计:多尺度计算与机器学习应用进展[J].低碳化学与化工,2025,50(10):82-90. DOI: 10.12434/j.issn.2097-2547.20250212.
REN Jiahao,HOU Huandi,DONG Ming,et al.Rational design of MOF for light hydrocarbon separation: Advances in multiscale computing and machine learning applications[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(10):82-90. DOI: 10.12434/j.issn.2097-2547.20250212.
金属-有机框架(Metal-Organic Framework,MOF)材料是一类由金属节点和有机配体通过自组装精确构建的纳米多孔晶体。由于MOF材料具有比表面积大和结构可调性高等优点,已在天然气脱重烃、烷烯烃分离以及乙炔纯化等轻烃分离领域展现出巨大的应用潜力。从数以万计的MOF材料中,实现目标应用材料的高效“按需”设计是一个巨大的挑战。计算机辅助技术为研究者提供了一种高效工具,通过理论计算与数据驱动模式可轻松地实现大量MOF材料的分离性能预测。基于计算机辅助MOF材料设计的前沿研究成果,系统梳理了多尺度计算方法(量子化学计算、分子动力学模拟和蒙特卡罗模拟)在MOF材料用于轻烃吸附/分离研究中的应用进展,并讨论了新兴机器学习手段辅助MOF材料开发的研究实例。最后,结合多尺度计算和数据驱动方法的技术特点,对计算机辅助MOF材料开发的未来发展方向进行了展望。
As a kind of nanoporous crystalline material
metal-organic framework (MOF) are constructed by self-assembly of metal nodes and organic ligands. Due to the advantages such as large specific surface area and high structural tunability
MOF has shown great application potential in light hydrocarbon separation fields
including heavy hydrocarbon removal in natural gas
alkane and alkene separation and acetylene purification. However
realizing efficient “on-demand” design of target application materials from tens of thousands of MOF remains a huge challenge. The computer-aided technology provides an efficient tool to easily realize separation performance prediction of a large number of MOF through theoretical calculations and data-driven approaches. Based on cutting-edge research achievements in computer-aided MOF design
the application advances in multiscale computing methods (quantum chemistry calculation
molecular dynamics simulation and Monte Carlo simulation) in the study of MOF for light hydrocarbon adsorption/separation were systematically reviewed
and case studies of emerging machine learning methods to assist MOF development were discussed. Finally
by combining the technical characteristics of multiscale computing and data-driven methods
the future development directions of computer-aided MOF design were prospected.
YANG S Q , HU T L . Reverse-selective metal-organic framework materials for the efficient separation and purification of light hydrocarbons [J ] . Coordination Chemistry Reviews , 2022 , 468 : 214628 .
FU M Y , WANG Y T , WANG X K , et al . Metal-organic framework materials for light hydrocarbon separation [J ] . ChemPlusChem , 2021 , 86 ( 3 ): 387 - 395 .
CUI W G , HU T L , BU X H . Metal-organic framework materials for the separation and purification of light hydrocarbons [J ] . Advanced Materials , 2020 , 32 ( 3 ): 1806445 .
ZHANG X L , WANG X K , GAO F , et al . Metal-organic frameworks for petroleum-based platform compound separations [J ] . Materials Advances , 2024 , 5 ( 8 ): 3135 - 3157 .
王小青 , 常则宇 , 李立博 , 等 . 金属有机骨架材料(MOFs)用于气态轻烃的高效分离研究进展 [J ] . 化工进展 , 2020 , 39 ( 6 ): 2218 - 2234 .
WANG X Q , CHANG Z Y , LI L B , et al . Progress in metal-organic frameworks for efficient separation of gaseous light hydrocarbon [J ] . Chemical Industry and Engineering Progress , 2020 , 39 ( 6 ): 2218 - 2234 .
CHUAH C Y , LEE H J , BEA T Y . Recent advances o f nanoporous adsorbents for light hydrocarbon (C 1 ~C 3 ) separation [J ] . Chemical Engineering Journal , 2022 , 430 ( 1 ): 132654 .
GAO X , YAN W H , HU B Y , et al . Porous metal-organic frameworks for light hydrocarbon separation [J ] . Molecules , 2023 , 28 ( 17 ): 6337 .
ZHOU Y S , LI P C , WANG Y F , et al . Progress in the separation and purification of carbon hydrocarbon compounds using MOFs and molecular sieves [J ] . Separations , 2023 , 10 ( 10 ): 543 .
仙梦丹 , 高学婷 , 李刚森 , 等 . Cu基MOFs在低浓度煤层气CH 4 /N 2 吸附分离中的分子模拟研究 [J ] . 低碳化学与化工 , 2025 , 50 ( 7 ): 83 - 90 .
XIAN M D , GAO X T , LI G S , et al . Molecular simulation study of Cu-based MOFs for CH 4 /N 2 adsorption separation in low-concentration coalbed methane [J ] . Low-Carbon Chemistry and Chemical Engineering , 2025 , 50 ( 7 ): 83 - 90 .
LI J H , CHEN J X , LIN R B , et al . Recent progress in metal-organic frameworks for the separation of gaseous hydrocarbons [J ] . Materials Chemistry Frontiers , 2023 , 7 ( 22 ): 5693 - 5730 .
ZHANG J , GUO X Z , LIN B , et al . Efficient adsorption separation of methane from C 2 ~C 3 hydrocarbons in a Co(II)-nodes metal-organic framework [J ] . Chinese Journal of Chemical Engineering , 2024 , 69 : 192 - 198 .
WU Y Q , WECKHUYSEN B . Separation and purification of hydrocarbons with porous materials [J ] . Angewandte Chemie International Edition , 2021 , 60 ( 35 ): 18930 - 18949 .
MA X C , FANG M , LIU B G , et al . Urea-assisted synthesis of biomass-based hierarchical porous carbons for the light hydrocarbons adsorption and separation [J ] . Chemical Engineering Journal , 2022 , 428 : 130985 .
LIU S S , CHEN Y L , YUE B , et al . Cascade adsorptive separation of light hydrocarbons by commercial zeolites [J ] . Journal of Energy Chemistry , 2022 , 72 : 299 - 305 .
HU P , HU J L , LI L , et al . Self-adjusted MOF pore environment through realigning adsorption orientation of guests for boosting separation of gaseous C 1 ~C 3 alkanes [J ] . Separation and Purification Technology , 2025 , 370 : 133289 .
LI T , LI X M , WANG Y , et al . A fluorinated hydrophobic metal-organic framework for CH 4 purification from seven-component C 1 /C 2 /C 3 hydrocarbons mixture [J ] . Separation and Purification Technology , 2025 , 361 : 131359 .
FAN W D , ZHANG X R , KANG Z X , et al . Isoreticular chemistry within metal-organic frameworks for gas storage and separation [J ] . Coordination Chemistry Reviews , 2021 , 443 : 213968 .
WANG W , CHEN Y C , FENG P Y , et al . Tailorable multi-modular pore-space-partitioned vanadium metal-organic frameworks for gas separation [J ] . Advanced Materials , 2024 , 36 ( 30 ): 2403834 .
MOGHADAM P Z , LI A , WIGGIN S B , et al . Development of a cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future [J ] . Chemistry of Materials , 2017 , 29 ( 7 ): 2618 - 2625 .
MAJUMDAR S , MOOSAVI S M , JABLONKA K M , et al . Diversifying databases of metal organic frameworks for high-throughput computational screening [J ] . ACS Applied Materials & Interfaces , 2021 , 13 ( 51 ): 61004 - 61014 .
GULBALKAN H C , UZUN A , KESKIN S . Evaluating CH 4 /N 2 separation performances of hundreds of thousands of real and hypothetical MOFs by harnessing molecular modeling and machine learning [J ] . ACS Applied Materials & Interfaces , 2025 , 17 ( 12 ): 17691 - 17702 .
NANDY A , YUE S W , OH C H , et al . A database of ultrastable MOFs reassembled from stable fragments with machine learning models [J ] . Matter , 2023 , 6 ( 5 ): 1585 - 1603 .
任嘉豪 . 面向气体分离的MOF材料计算筛选及其性能研究 [D ] . 北京 : 北京化工大学 , 2023 .
REN J H . Computational screening and performance study of metal-organic frameworks for gas separation [D ] . Beijing : Beijing University of Chemical Technology , 2023 .
AHMAD M , LUO Y , WÖLL C , et al . Design of metal-organic framework templated materials using high-throughput computational screening [J ] . Molecules , 2020 , 25 ( 21 ): 4875 .
YIN X Y , GOUNARIS C E . Computational discovery of metal-organic frameworks for sustainable energy systems: Open challenges [J ] . Computers & Chemical Engineering , 2022 , 167 : 108022 .
DEMIR H , DAGLAR H , GULBALKAN H C , et al . Recent advances in computational modeling of MOFs: From molecular simulations to machine learning [J ] . Coordination Chemistry Reviews , 2023 , 484 : 215112 .
刘治鲁 , 李炜 , 刘昊 , 等 . 金属有机骨架的高通量计算筛选研究进展 [J ] . 化学学报 , 2019 , 77 ( 4 ): 323 - 339 .
LIU Z L , LI W , LIU H , et al . Research progress of high-throughput computational screening of metal-organic frameworks [J ] . Acta Chimica Sinica , 2019 , 77 ( 4 ): 323 - 339 .
SANG J R , WEI F , DONG X Y . Gas adsorption and separation in metal-organic frameworks by PC-SAFT based density functional theory [J ] . The Journal of Chemical Physics , 2021 , 155 ( 12 ): 124113 .
ZHANG T , LV J J , DANG Y , et al . High-throughput computational screening-driven porous material discovery for benchmark propylene/propane separation [J ] . Advanced Functional Materials , 2025 , 35 ( 2 ): 2412457 .
XUE X Y , CHENG M , WANG S H , et al . High-throughput screening of metal-organic frameworks assisted by machine learning: Propane/propylene separation [J ] . Industrial & Engineering Chemistry Research , 2023 , 62 ( 2 ): 1073 - 1084 .
CHOUDHURI I , YE J , TRUHLAR D G . Computational quantum chemistry of metal-organic frameworks [J ] . Chemical Physics Reviews , 2023 , 4 ( 3 ): 031304 .
PAL S C , AHMED R , MANNA A K , et al . Potential of a pH-stable microporous MOF for C 2 H 2 /C 2 H 4 and C 2 H 2 /CO 2 gas separations under ambient conditions [J ] . Inorganic Chemistry , 2022 , 61 ( 45 ): 18293 - 18302 .
XIAN S K , PENG J J , PANDEY H , et al . Robust metal-organic frameworks with high industrial applicability in efficient recovery of C 3 H 8 and C 2 H 6 from natural gas upgrading [J ] . Engineering , 2023 , 23 : 56 - 63 .
WANG C , XIONG C , ZHANG X S , et al . External optimization of Zr-MOF with mercaptosuccinic acid for efficient recovery of gold from solution: Adsorption performance and DFT calculation [J ] . Separation and Purification Technology , 2022 , 296 : 121329 .
LEE K , HOWE J D , LIN L , et al . Small-molecule adsorption in open-site metal-organic frameworks: A systematic density functional theory study for rational design [J ] . Chemistry of Materials , 2015 , 27 ( 3 ): 668 - 678 .
LIU Y Y , WANG J W , FAN S C , et al . Maximizing the density of π-electron in metal-organic frameworks for benchmark paraffin separation [J ] . Advanced Functional Materials , 2025 , 35 ( 35 ): 2504614 .
SRIVASTAVA S , SHET S P , PRIYA S S , et al . Molecular simulation of copper based metal-organic framework (Cu-MOF) for hydrogen adsorption [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 35 ): 15820 - 15831 .
DENG J , ZHAO G J , ZHANG L , et al . CO 2 adsorption and separation properties of M-MOF-74 materials determined by molecular simulation [J ] . Capillarity , 2023 , 6 ( 1 ): 13 - 18 .
TAO Y R , ZHANG G H , XU H J . Grand canonical Monte Carlo (GCMC) study on adsorption performance of metal organic frameworks (MOFs) for carbon capture [J ] . Sustainable Materials and Technologies , 2022 , 32 : e00383 .
LIU X , LIU J , MAO S , et al . Molecular dynamics simulation of CO 2 permeation and separation in Zr-MOF membranes [J ] . Fluid Phase Equilibria , 2024 , 581 : 114073 .
WANG S M , WANG F , DONG Y L , et al . Reversed C 2 H 6 /C 2 H 4 separation in interpenetrated diamondoid coordination networks with enhanced host-guest interaction [J ] . Separation and Purification Technology , 2021 , 276 : 119385 .
MUKHERJEE P , GHORAI P K . Separation of trans-1,3-butadiene from C 4 hydrocarbons mixtures by metal organic framework: A molecular dynamics simulation investigation [J ] . Chemical Physics , 2023 , 566 : 111790 .
CHUNG Y G , CAMP J , HARANCZYK M , et al . Computation-ready, experimental metal-organic frameworks: A tool to enable high-throughput screening of nanoporous crystals [J ] . Chemistry of Materials , 2014 , 26 ( 21 ): 6185 - 6192 .
CHUNG Y G , HALDOUPIS E , BUCIOR B J , et al . Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019 [J ] . Journal of Chemical & Engineering Data , 2019 , 64 ( 12 ): 5985 - 5998 .
LEE S , KIM B , CHO H , et al . Computational screening of trillions of metal-organic frameworks for high-performance methane storage [J ] . ACS Applied Materials & Interfaces , 2021 , 13 ( 20 ): 23647 - 23654 .
GU C K , LIU J , SHOLL D S . High-throughput screening of anion-pillared metal-organic frameworks for the separation of light hydrocarbons [J ] . The Journal of Physical Chemistry C , 2021 , 125 ( 36 ): 20076 - 20086 .
KANG M J , YOON S H , GA S B , et al . High-throughput discovery of Ni(IN) 2 for ethane/ethylene separation [J ] . Advanced Science , 2021 , 8 ( 11 ): 2004940 .
SIWAIPRAM S , BOPP P A , KEUPP J , et al . Molecular insight into the swelling of a MOF: A force-field investigation of methanol uptake in MIL-88B(Fe)-Cl [J ] . The Journal of Physical Chemistry C , 2021 , 125 ( 23 ): 12837 - 12847 .
KULKARNI A R , SHOLL D S . Screening of copper open metal site MOFs for olefin/paraffin separations using DFT-derived force fields [J ] . The Journal of Physical Chemistry C , 2016 , 120 ( 40 ): 23044 - 23054 .
LIU L , WANG L , LIU D H , et al . High-throughput computational screening of Cu-MOFs with open metal sites for efficient C 2 H 2 /C 2 H 4 separation [J ] . Green Energy & Environment , 2020 , 5 ( 3 ): 333 - 340 .
ZHANG X . Machine-learning-assisted high-throughput screening of high-performance MOFs for multicomponent gas separation [J ] . Industrial & Engineering Chemistry Research , 2025 , 64 ( 5 ): 2926 - 2936 .
GOEMINNE R , VANDUYFHUYS L , SPEYBROECK V V , et al . DFT-quality adsorption simulations in metal-organic frameworks enabled by machine learning potentials [J ] . Journal of Chemical Theory and Computation , 2023 , 19 ( 18 ): 6313 - 6325 .
HAJIBABAEI A , HA M , POURASAS S , et al . Machine learning of first-principles force-fields for alkane and polyene hydrocarbons [J ] . The Journal of Physical Chemistry A , 2021 , 125 ( 42 ): 9414 - 9420 .
WIESER S , ZOJER E . Machine learned force-fields for an Ab-initio quality description of metal-organic frameworks [J ] . npj Computational Materials , 2024 , 10 ( 1 ): 18 .
LIN J L , ZHANG H B , ASADI M , et al . Machine learning-driven discovery and structure-activity relationship analysis of conductive metal-organic frameworks [J ] . Chemistry of Materials , 2024 , 36 ( 11 ): 5436 - 5445 .
YANG Y J , GUO S Y , LI S H , et al . Topological data analysis combined with high-throughput computational screening of hydrophobic metal-organic frameworks: Application to the adsorptive separation of C 3 components [J ] . Nanomaterials , 2024 , 14 ( 3 ): 298 .
CAI C Z , LI L F , GUAN Y F , et al . High-throughput computational screening and molecular fingerprint design of metal-organic framework adsorbents for separation of C 3 components [J ] . Giant , 2024 , 17 : 100223 .
YAN T A , BI Z Y , LIU D H , et al . A self-evolutionary methodology for reverse design of novel MOFs [J ] . The Journal of Physical Chemistry A , 2022 , 126 ( 45 ): 8476 - 8486 .
LIANG H , JIANG K , YAN T A , et al . XGBoost: An optimal machine learning model with just structural features to discover MOF adsorbents of Xe/Kr [J ] . ACS omega , 2021 , 6 ( 13 ): 9066 - 9076 .
AHMED A , NATH K , MATZGER A J , et al . Machine learning predictions of methane storage in MOFs: Diverse materials, multiple operating conditions, and reverse models [J ] . ACS Applied Materials & Interfaces , 2024 , 16 ( 41 ): 55284 - 55295 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
 蜀公网安备51012202001533
 蜀公网安备51012202001533