
浏览全部资源
扫码关注微信
西南化工研究设计院有限公司 多孔材料与分离转化全国重点实验室,国家碳一化学工程技术研究中心, 四川 成都 610225
吴子波(1985—),硕士,高级工程师,研究方向为碳一化工设计,E-mail:155338531@qq.com。
收稿:2025-04-29,
修回:2025-06-24,
纸质出版:2025-10-25
移动端阅览
吴子波,吴路平,林必华等.适应可再生电力不稳定性的组合态柔性制甲醇技术探讨[J].低碳化学与化工,2025,50(10):65-74.
WU Zibo,WU Luping,LIN Bihua,et al.Discussion on multi-mode flexible methanol production technology adapted to volatility of renewable electricity[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(10):65-74.
吴子波,吴路平,林必华等.适应可再生电力不稳定性的组合态柔性制甲醇技术探讨[J].低碳化学与化工,2025,50(10):65-74. DOI: 10.12434/j.issn.2097-2547.20250207.
WU Zibo,WU Luping,LIN Bihua,et al.Discussion on multi-mode flexible methanol production technology adapted to volatility of renewable electricity[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(10):65-74. DOI: 10.12434/j.issn.2097-2547.20250207.
氢能是可再生电力消纳中应用最广泛的二次能源,但存在“制储输用”难题。当前及未来中长期碳排放格局中,低浓度(体积分数< 20%)二氧化碳排放占总排放的50%以上,是碳减排的关键治理领域。聚焦上述问题,提出将工业低浓度二氧化碳与可再生电力电解水制氢技术协同整合,构建催化反应系统制备绿色甲醇。该路径不仅可利用甲醇作为绿色安全的液态储氢载体,还具有显著的碳减排效益。针对可再生电力波动性与化工生产稳定性之间存在严重时序失配的问题,创新性开发了组合态柔性制甲醇技术:采用模块化架构设计,实现不同工序差异化稳态运行;构建多时间尺度协同优化模型,集成秒级电力波动与小时级化工过程动态响应;开发多目标约束优化算法,平衡碳减排效益与经济性。以东北地区典型风电场为例,通过系统仿真与成本核算,验证了新技术在波动性电力输入条件下的可行性,并量化得到平准化甲醇生产成本为3832.26 CNY/t。本研究可为工业碳源高效转化提供一种技术可行、经济合理的解决方案。
Hydrogen energy is the most widely applied secondary energy in renewable electricity consumption
but it faces challenges in “production
storage
transportation and utilization”. In the current and mid- to long-term carbon emission landscape
low-concentration CO
2
(volume fraction
<
20%) accounts for more than 50% of total emissions
making it a key area for carbon reduction governance. Focusing on these issues
the synergistic integration of industrial low-concentration CO
2
with renewable electricity-driven water electrolysis for hydrogen production was proposed
establis
hing a catalytic reaction system for green methanol synthesis. This pathway can not only utilize methanol as a green and safe liquid hydrogen carrier
but also deliver significant carbon reduction benefits. To address the severe temporal mismatch between renewable power volatility and chemical production stability
a multi-mode flexible methanol production technology is innovatively developed: Adopting a modular architecture to achieve differentiated steady-state operation of different processes
constructing a multi-timescale cooperative optimization model that integrates second-level power fluctuations with hour-level chemical process dynamic responses
developing a multi-objective constrained optimization algorithm to balance carbon reduction benefits and economic performance. Taking a typical wind farm in Northeast China as a case study
system simulation and cost analysis verify the feasibility of the proposed technology under fluctuating power input conditions
and the levelized methanol production cost is quantified as 3832.26 CNY/t. The research can provide a technically feasible and economically rational solution for efficient conversion of industrial carbon sources.
国家发展改革委 . 产业结构调整指导目录(2024年本) [EB/OL ] . ( 2024-02-01 )[ 2025-02-01 ] . https://zfxxgk.ndrc.gov.cn/web/ iteminfo.jsp?id=20305 https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=20305 .
National Development and Reform Commission . Guidance catalogue for industrial restructuring (2024 edition) [EB/OL ] . ( 2024-02-01 )[ 2025-02-01 ] . https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=20305 https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=20305 .
张克利 , 刘欣 , 张天娇 . 低浓度二氧化碳捕集技术现状 [J ] . 当代化工 , 2025 , 54 ( 3 ): 667 - 692 .
ZHANG K L , LIU X , ZHANG T J . Present situation of low-concentration carbon dioxide capture technology [J ] . Contemporary Chemical Industry , 2025 , 54 ( 3 ): 667 - 692 .
舒斌 , 陈建宏 , 熊健 , 等 . 碳中和目标下推动绿色甲醇发展的必要性分析 [J ] . 化工进展 , 2023 , 42 ( 9 ): 4471 - 4478 .
SHU B , CHEN J H , XIONG J . et al . Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 9 ): 4471 - 4478 .
吉旭 , 林今 , 聂李红 , 等 . 适用可再生能源不确定特性的合成氨多稳态柔性工艺技术 [J ] . 洁净煤技术 , 2024 , 30 ( 2 ): 23 - 35 .
JI X , LIN J , NIE L H , et al . Multistable-flexible ammonia process adapted to renewable energy [J ] . Clean Coal Technology , 2024 , 30 ( 2 ): 23 - 35 .
吉旭 , 周步祥 , 贺革 , 等 . 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展 [J ] . 工程科学与技术 , 2022 , 54 ( 3 ): 1 - 11 .
JI X , ZHOU B X , HE G , et al . Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production [J ] . Advanced Engineering Sciences , 2022 , 54 ( 5 ): 1 - 11 .
SANCHEZ A , MARTIN M . Optimal renewable production of ammonia from water and air [J ] . Journal of Cleaner Production , 2018 , 178 : 325 - 342 .
CHEHADE G , DINCER I . Progress in green ammonia production as potential carbon-free fuel [J ] . Fuel , 2021 , 299 : 120845 .
王永康 , 易俊 , 谢晓頔 . 风光氢氨醇一体化技术和产业综述 [J ] . 发电技术 , 2025 , 43 ( 3 ): 556 - 568 .
WANG Y K , YI J , XIE X D . Review of wind-solar-hydrogen-ammonia-methanol integrated technologies and industry [J ] . Power Generation Technology , 2025 , 43 ( 3 ): 556 - 568 .
闫娜 , 严欢 , 贾宏刚 , 等 . 面向新能源高占比地区的混合储能优化配置及运行策略 [J ] . 电网与清洁能源 , 2024 , 40 ( 7 ): 18 - 27 .
YAN N , YAN H , JIA H G , et al . Optimization configuration and operation strategy of hybrid energy storage for areas with a high proportion of new energy [J ] . Power System and Clean Energy , 2024 , 40 ( 7 ): 18 - 27 .
KENKEL P , WASSERMANN T , ROSE C , et al . A generic superstructure modeling and optimization framework on the example of bi-criteria power-to-methanol process design [J ] . Computers & Chemical Engineering , 2021 , 150 : 107327 .
CHEN C , YANG A D . Power-to-methanol: The role of process flexibility in the integration of variable renewable energy into chemical production [J ] . Energy Conversion and Management , 2021 , 228 : 113673 .
HUANG R X , KANG L X , LIU Y Z . Renewable synthetic methanol system design based on modular production lines [J ] . Renewable and Sustainable Energy Reviews , 2022 , 161 : 112379 .
俞红梅 , 邵志刚 , 侯明 , 等 . 电解水制氢技术研究进展与发展建议 [J ] . 中国工程科学 , 2021 , 23 ( 2 ): 146 - 152 .
YU H M , SHAO Z G , HOU M , et al . Hydrogen production by water electrolysis progress and suggestions [J ] . Strategic Study of Chinese Academy of Engineering , 2021 , 23 ( 2 ): 146 - 152 .
马晓锋 , 张舒涵 , 何勇 , 等 . PEM电解水制氢技术的研究现状与应用展望 [J ] . 太阳能学报 , 2022 , 43 ( 6 ): 420 - 427 .
MA X F , ZHANG S H , HE Y , et al . Research status and application prospect of PEM electrolysis water technology for hydrogen production [J ] . ACTA Energiae Solaris Sinica , 2022 , 43 ( 6 ): 420 - 427 .
陈颖 . 电解水制氢技术的研究现状及未来发展趋势 [J ] . 太阳能 , 2024 , 1 ( 1 ): 5 - 11 .
CHEN Y . Research status and future development trend of hydrogen production by water electrolysis [J ] . Solar Energy , 2024 , 1 ( 1 ): 5 - 11 .
JIANG Z L , SONG S J , ZHENG X B , et al . Lattice strain and schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H 2 production [J ] . Journal of the American chemical society , 2022 , 144 ( 42 ): 19619 - 19626 .
LI G , GAO R , QIU Z Y , et al . Highly dispersed ruthenium nanoparticles on nitrogen doped carbon toward efficient hydrogen evolution in both alkaline and acidic electrolytes [J ] . RSC Advances , 2022 , 12 ( 22 ): 13932 - 13937 .
ZHAO S A , STOCKS A , RASIMICK B , et al . Highly active durable dispersed iridium nanocatalysts for PEM water electrolyzers [J ] . Journal of the electrochemical society , 2018 , 165 ( 2 ): 82 - 89 .
HOLZAPFEL P , BÜHLER M , VAN PHAM C , et al . Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis [J ] . Electrochemistry Communications , 2020 , 110 : 106640 .
李雪琴 , 刘鹏 , 吴幼青 , 等 . 生物质气化技术的发展现状及展望 [J ] . 林产化学与工业 , 2022 , 42 ( 5 ): 113 - 121 .
LI X Q , LIU P , WU Y Q , et al . Development status and prospect of biomass gasification technology [J ] . Chemistry and Industry of Forest Products , 2022 , 42 ( 5 ): 113 - 121 .
杨晓 , 姚明宇 , 韩伟 , 等 . 大规模可再生能源电解制氢技术现状及发展研究 [J ] . 热力发电 , 2025 , 54 ( 5 ): 33 - 43 .
YANG N , YAO M Y , HAN W , et al . Review on current status and development of large-scale renewable energy electrolysis hydrogen production technology [J ] . Power System and Clean Energy , 2024 , 40 ( 7 ): 18 - 27 .
ROJAS N , SÁNCHEZ-MOLINA M , SEVILLA G , et al . Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions [J ] . Thermal power generation , 2024 , 40 ( 7 ): 18 - 27 .
何泽兴 , 史成香 , 陈志超 , 等 . 质子交换膜电解水制氢技术的发展现状及展望 [J ] . 化工进展 , 2021 , 40 ( 9 ): 4762 - 4773 .
HE Z X , SHI C X , CHEN Z C , et al . Development status and prospects of proton exchange membrane water electrolysis [J ] . Chemical Industry and Engineering Progress , 2021 , 40 ( 9 ): 4762 - 4773 .
周雨轩 , 张志宇 , 刘洪涛 , 等 . 可再生能源大规模制氢技术现状及发展趋势 [J ] . 低温与特气 , 2025 , 43 ( 1 ): 15 - 19 .
ZHOU Y X , ZHANG Z Y , LIU H T , et al . Current situation and development trend of large-scale hydrogen production technology from renewable energy [J ] . Low Temperature and Specialty Gases , 2025 , 43 ( 1 ): 15 - 19 .
International Energy Agency . The future of hydrogen: Seizing today’s opportunities [R ] . Paris : IEA , 2019 .
陆诗建 , 贡玉萍 , 刘玲 , 等 . 有机胺CO 2 吸收技术研究现状与发展方向 [J ] . 洁净煤技术 , 2022 , 28 ( 9 ): 44 - 54 .
LU S J , GONG Y P , LIU L , et al . Research status and future development direction of CO 2 absorption technology for organic amine [J ] . Clean Coal Technology , 2022 , 28 ( 9 ): 44 - 54 .
陆诗建 , 张娟娟 , 刘玲 , 等 . 工业源二氧化碳捕集技术进展与发展趋势 [J ] . 现代化工 , 2022 , 42 ( 11 ): 59 - 64 .
LU S J , ZHANG J J , LIU L , et al . Progress and development trend of industry-sourced carbon dioxide capture technology [J ] . Modern Chemical Industry , 2022 , 42 ( 11 ): 59 - 64 .
张嘉伟 , 顾文波 , 张富龙 . 基于化学吸收法的二氧化碳捕集技术研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 4 ): 96 - 106 .
ZHANG J W , GU W B , ZHANG F L . Research progress of carbon dioxide capture technology based on chemical absorption method [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 4 ): 96 - 106 .
胡长征 , 王雅博 , 刘圣春 . MEA溶液在生物质电厂和燃煤电厂捕集CO 2 中的应用对比 [J ] . 综合智慧能源 , 2022 , 44 ( 6 ): 78 - 85 .
HU C Z , WANG B Y , LIU S C . Application of MEA solution in the CO 2 capture in biomass power plants and coal-fired power plants [J ] . Integrated Intelligent Energy , 2022 , 44 ( 6 ): 78 - 85 .
熊波 , 陈健 , 李克兵 , 等 . 工业排放气二氧化碳捕集与利用技术进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 1 ): 9 - 18 .
XIONG B , CHEN J , LI K B , et al . Technical progress in carbon dioxide capture and utilization of industrial vent gas [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 1 ): 9 - 18 .
武永光 . 二氧化碳加氢制甲醇暨新能源制氢工业化进展 [J ] . 化学工业 , 2021 , 39 ( 2 ): 36 - 39 .
WU Y G . Advances in industrialization for CO 2 hydrogenation to methanol and hydrogen production from new energy [J ] . Chemical Industry , 2021 , 39 ( 2 ): 36 - 39 .
WANG J J , LI G N , LI Z L , et al . A highly selective and stable ZnO-ZrO 2 solid solution catalyst for CO 2 hydrogenation to methanol [J ] . Science Advances , 2017 , 3 ( 10 ): e1701290 .
周君 , 安娟 , 杨宽辉 . 现代能源体系耦合绿氢化工应用的研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 4 ): 46 - 54 .
ZHOU J , AN J , YANG K H , et al . Research progresses in application of modern energy system coupled with green hydrogen chemical industry [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 4 ): 46 - 54 .
吴子波 , 张敬宇 , 吴路平 , 等 . 不同绿氢耦合生物质气化制绿色甲醇工艺经济性分析 [J ] . 低碳化学与化工 , 2025 , 50 ( 3 ): 97 - 105 .
WU Z B , ZHANG J Y , WU L P , et al . Economic analysis of different processes of green hydrogen coupled with biomass gasification for green methanol production [J ] . Low-Carbon Chemistry and Chemical Engineering , 2025 , 50 ( 3 ): 97 - 105 .
SANCHEZ A , MARTIN M . Optimal renewable production of ammonia from water and air [J ] . Journal of Cleaner Production , 2018 , 178 : 325 - 342 .
CHEHADE G , DINCER I . Progress in green ammonia production as potential carbon-free fuel [J ] . Fuel , 2021 , 299 : 120845 .
吴子波 , 蹇守华 , 吴路平 . 不同合成工艺的二氧化碳催化加氢制甲醇装置经济性分析 [J ] . 低碳化学与化工 , 2023 , 48 ( 6 ): 60 - 66 .
WU Z B , JIAN S H , WU L P . Plants economic analysis of catalytic hydrogenation of CO 2 to methanol with different synthesis p rocesses [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 6 ): 60 - 66 .
孟文亮 . 二氧化碳加氢合成甲醇工艺建模、分析与系统集成研究 [D ] . 兰州 : 兰州理工大学 , 2021 .
MENG W L . Modeling, analysis, and integration of methanol production by carbon dioxide hydrogenation [D ] . Lanzhou : Lanzhou University of Technology , 2021 .
蹇守华 , 王雪峰 , 吴路平 , 等 . 一种二氧化碳制甲醇精馏系统 : 217119361U [P ] . 2022-08-05 .
JIAN S H , WANG X F , WU L P , et al . Rectification system for preparing methanol from carbon dioxide : 217119361U [P ] . 2022-08-05 .
吴子波 , 吴路平 , 赵杰 , 等 . 一种深远海自给式二氧化碳制甲醇热量耦合系统及调峰工艺 : 119633423A [P ] . 2025-03-18 .
WU Z B , WU L P , ZHAO J , et al . A self-sufficient thermal coupling system for deep-sea carbon dioxide to methanol production and peak regulation process : 119633423A [P ] . 2025-03-18 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
 蜀公网安备51012202001533
 蜀公网安备51012202001533