浏览全部资源
扫码关注微信
1.大连理工大学 化工学院,辽宁 大连 116024
2.河南大学 能源科学与技术学院,河南 郑州 450046
邢莹莹(2000 —),硕士研究生,研究方向为生物质快速热解油提质,E-mail:xing151191@163.com。
肖亚辉(1987 —),博士,副教授,研究方向为生物质催化热解,E-mail:yahuixiao1987@163.com。
收稿日期:2025-04-09,
修回日期:2025-04-27,
纸质出版日期:2025-08-25
移动端阅览
邢莹莹,李扬,徐绍平等.煅烧钛铁矿催化松木屑热解油提质研究[J].低碳化学与化工,2025,50(8):44-53.
XING Yingying,LI Yang,XU Shaoping,et al.Study on catalytic upgrading of pine sawdust pyrolysis oil by calcined ilmenite[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):44-53.
邢莹莹,李扬,徐绍平等.煅烧钛铁矿催化松木屑热解油提质研究[J].低碳化学与化工,2025,50(8):44-53. DOI: 10.12434/j.issn.2097-2547.20250170.
XING Yingying,LI Yang,XU Shaoping,et al.Study on catalytic upgrading of pine sawdust pyrolysis oil by calcined ilmenite[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):44-53. DOI: 10.12434/j.issn.2097-2547.20250170.
针对生物质热解油氧含量大、品质差等问题,分别在落下床及其串联固定床反应装置中进行了松木屑快速热解和基于煅烧钛铁矿催化剂的生物质热解油提质研究,考察了热解温度、提质温度、催化剂质量与生物质进料速率比(
τ
,g/(g·min
-1
))及钛铁矿的不同煅烧温度对热解油产率和品质的影响。结果表明,热解温度550 °C时,热解油总产率及其轻质油产率均达到最大值。以600 °C煅烧的钛铁矿作为催化剂,在提质温度为550 °C、
τ
为20 g/(g·min
-1
)条件下,热解
油品质显著提高,其中轻质油中烃类化合物相对含量由空白实验(采用石英砂床料)的11.1%增大至38.7%。提高钛铁矿的煅烧温度使得轻质油产率增大,热解油品质提高,但煅烧温度过高将导致轻质油产率显著减小,其中600 °C煅烧的钛铁矿具有最佳催化提质性能,其催化下的轻质油产率达到最大值(13.1%)且烃类化合物富集。结合XRD、N
2
吸/脱附、XPS和NH
3
-TPD等表征方法探究了煅烧钛铁矿物化性质变化与催化提质性能的构效关系。结果表明,600 °C煅烧的钛铁矿的比表面积最大,且其表面Fe
3+
和晶格氧相对含量最大。Fe
3+
在反应中会被部分还原并释放配位氧,形成大量氧空位。晶格氧和氧空位在热解油脱氧过程中分别作为氧供体和脱氧活性中心,通过氧化-还原循环实现高效脱氧。此外,升高煅烧温度还促进了钛铁矿表面强酸位点形成,进一步促进了热解油裂解和脱氧反应进行,但过多的强酸位点将引起热解油过度裂解,减小轻质油产率。
In response to the problems of high oxygen content and poor quality of biomass pyrolysis oil
rapid pyrolysis of pine sawdust and the upgrading of the pyrolysis oil with calcined ilmenite as catalyst were studied in a free-fall reactor and it in tandem with a fixed-bed reactor respectively. The effects of pyrolysis temperatures
upgrading temperatures
catalyst mass to biomass feed rate ratios (
τ
g/(g·min
-1
)) and different calcination temperatures of ilmenite on the pyrolysis oil yields and qualities were investigated. The results show that the total pyrolysis oil yield and light oil yield both reach their maximum values at the pyrolysis temperature of 550 ℃. With the ilmenite calcined at 600 ℃ as catalyst
under the upgrading temperature of 550 ℃ and
τ
of 20 g/(g·min
-1
)
the pyrolysis oil quality is significantly improved. The relative hydrocarbon content in the light oil reaches to 38.7%
while that from the blank test (with quartz sand as bed material) is only 11.1%. Increasing the calcination temperatures of ilmenite allows for an increase of light oil yields and improvement of pyrolysis oil quality. However
the excessive calcination temperatures significantly reduce the light oil yields (13.1%). The ilmenite calcined at 600 ℃ exhibits the best catalytic upgrading performance
achieving maximum light oil yield and enrichment hydrocarbon compounds. Structure-performance relationships of structural changes and upgrading performances of calcin
ed ilmenite were investigated by XRD
N
2
adsorption/desorption
XPS and NH
3
-TPD. The results show that ilmenite calcined at 600 ℃ has the maximum specific surface area and the relative contents of surface Fe
3+
and lattice oxygen. Fe
3+
species are reduced in the reaction and release coordination oxygen
forming abundant oxygen vacancies. Lattice oxygen and oxygen vacancies separately act as oxygen donors and active sites in the deoxidation reaction of pyrolysis oil
achieving efficient deoxidation through the oxidation-reduction cycle. Additionally
increasing the calcination temperature also promotes the formation of strong acid sites on the surface of calcined ilmenite
further enhancing the cracking and deoxidation of pyrolysis oil. However
the excessive strong acid sites will lead to over-cracking of pyrolysis oil
reducing the light oil yields.
MISHRA R K , KUMAR D J P , SANKANNAVAR R , et al . Hydro-deoxygenation of pyrolytic oil derived from pyrolysis of lignocellulosic biomass: A review [J ] . Fuel , 2024 , 360 : 130473 .
ZHANG Y N , LIANG Y Y , LI S Y , et al . A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades [J ] . Fuel , 2023 , 347 : 128461 .
BALAT M . An overview of the properties and applications of biomass pyrolysis oils [J ] . Energy Sources, Part A: Recovery, Utilization, and Environmental Effects , 2011 , 33 ( 7 ): 674 - 689 .
NOROUZI O , TAGHAVI S , ARKU P , et al . What is the best catalyst for biomass pyrolysis? [J ] . Journal of Analytical and Applied Pyrolysis , 2021 , 158 : 105280 .
NAQVI S R , KHOJA A H , ALI I , et al . Recent progress in catalytic deoxygenation of biomass pyrolysis oil using microporous zeolites for green fuels production [J ] . Fuel , 2023 , 333 : 126268 .
GUO X , YANG H J , WENGA T , et al . Catalytic fast pyrolysis of Arundo donax in a two-stage fixed bed reactor over metal-modified HZSM-5 catalysts [J ] . Biomass and Bioenergy , 2022 , 156 : 106316 .
TAWALBEH M , AL-OTHMAN A , SALAMAH T , et al . A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials [J ] . Journal of Environmental Management , 2021 , 299 : 113597 .
TIAN X J , WANG Y P , ZENG Z H , et al . Research progress on the role of common metal catalysts in biomass pyrolysis: A state-of-the-art review [J ] . Green Chemistry , 2022 , 24 ( 10 ): 3922 - 3942 .
QUAN C , XU S P , ZHOU C C . Steam reforming of bio-oil from coconut shell pyrolysis over Fe/olivine catalyst [J ] . Energy Conversion and Management , 2017 , 141 : 40 - 47 .
孙佳磊 , 荣令坤 , 崔保禄 , 等 . 无氧气氛下赤铁矿与生物质的热行为研究 [J ] . 有色金属(选矿部分) , 2022 , ( 4 ): 33 - 39 .
SUN J L , RONG L K , CUI B L , et al . Study on thermal behavior of hematite and biomass in anaerobic atmosphere [J ] . Nonferrous Metals (Mineral Processing Section) , 2022 , ( 4 ): 33 - 39 .
LI C , YELLEZUOME D , LI Y K , et al . Catalytic pyrolysis of rice straw for high yield of aromatics over modified ZSM-5 catalysts and its kinetics [J ] . Renewable Energy , 2023 , 209 : 569 - 580 .
杨欣欣 , 刘飞 , 姚梦琴 . CeO 2 复合改性 ZSM-5 分子筛用于催化甲醇制丙烯研究 [J ] . 硅酸盐通报 , 2022 , 41 ( 7 ): 2549 - 2557+2583 .
YANG X X , LIU F , YAO M Q . CeO 2 composite modified ZSM-5 molecular sieve for catalyzing methanol to propylene [J ] . Bulletin of the Chinese Ceramic Society , 2022 , 41 ( 7 ): 2549 - 2557+2583 .
XING X T , LIU L , ZHANG Y C , et al . Mild modification of lignin pyrolysis vapors by metal oxide catalysts: A comparative study with molecular sieve catalysts [J ] . Energy Sources, Part A: Recovery, Utilization, and Environmental Effects , 2023 , 45 ( 2 ): 5052 - 5062 .
CHANATHAWORN J , YATONGCHAI C . Upgrading of bio-oil from energy crops via fast pyrolysis using nanocatalyst in a bubbling fluidized bed reactor [J ] . International Energy Journal , 2022 , 22 ( 1 ): 71 - 80 .
PRASERTTAWEEPORN K , VITIDSANT T , CHARUSIRI W . Ni-modified dolomite for the catalytic deoxygenation of pyrolyzed softwood and non-wood to produce bio-oil [J ] . Results in Engineering , 2022 , 14 : 100461 .
ZHANG Q , SUN Y S , JIN G J , et al . Detailed assessment of hematite-promoted pyrolysis of corn straw: Gas products, reaction characteristics and thermo-kinetics [J ] . Chemical Engineering Research and Design , 2024 , 203 : 99 - 112 .
ZHANG J J , WANG M , XU S P , et al . Hydrogen and methane mixture from biomass gasification coupled with catalytic tar reforming, methanation and adsorption enhanced reforming [J ] . Fuel Processing Technology , 2019 , 192 : 147 - 153 .
ZHANG J J , WANG G Y , XU S P . Upgrading of biomass fast pyrolysis oil over a moving bed of coal char [J ] . Carbon Resources Conversion , 2020 , 3 : 130 - 139 .
FENG Y C , XU S P , WANG K C , et al . Coal pyrolysis under varied atmospheres and temperatures in a moving-bed pyrolyzer for blue-coke production [J ] . Fuel Processing Technology , 2022 , 234 : 107322 .
YIH O X . Production of renewable hydrocarbon fuel via titanium oxide-alumina (TiO 2 -Al 2 O 3 ) catalytic deoxygenation reaction [D ] . Kuala Lumpur : University of Malaya , 2020 .
刘锐 , 徐绍平 . 解耦双循环反应系统中白松木屑热解制油 [J ] . 天然气化工—C1 化学与化工 , 2021 , 46 ( 3 ): 81 - 87 .
LIU R , XU S P . Pyrolysis of white pine sawdust for oil production in a decoupled dual loop reaction system [J ] . Natural Gas Chemical Industry , 2021 : 46 ( 3 ): 81 - 87 .
FU X , WANG Y , WEI F . Phase transitions and reaction mechanism of ilmenite oxidation [J ] . Metallurgical and Materials Transactions A , 2010 , 41 : 1338 - 1348 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构