浏览全部资源
扫码关注微信
1.西北大学 化工学院 碳氢资源清洁利用国际科技合作基地,陕北能源先进化工利用技术教育部工程研究中心,陕西省洁净煤转化工程技术研究中心,陕西 西安 710127
2.榆神工业区能源科技发展有限公司,陕西 榆林 719302
郑煜晨(2005—),本科,研究方向为煤化工与低碳化工,E-mail:2261921245@qq.com。
张建波(1986—),博士,教授,研究方向为煤与天然气化工,E-mail:jbzhang@nwu.edu.cn。
收稿日期:2025-04-08,
修回日期:2025-05-01,
纸质出版日期:2025-08-25
移动端阅览
郑煜晨,王建友,窦珍等.煤/煤焦与天然气协同转化研究进展[J].低碳化学与化工,2025,50(8):1-11.
ZHENG Yuchen,WANG Jianyou,DOU Zhen,et al.Research progress on synergistic conversion of coal/coal char and natural gas[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):1-11.
郑煜晨,王建友,窦珍等.煤/煤焦与天然气协同转化研究进展[J].低碳化学与化工,2025,50(8):1-11. DOI: 10.12434/j.issn.2097-2547.20250165.
ZHENG Yuchen,WANG Jianyou,DOU Zhen,et al.Research progress on synergistic conversion of coal/coal char and natural gas[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):1-11. DOI: 10.12434/j.issn.2097-2547.20250165.
煤与天然气协同转化有助于两种能源资源的碳氢元素互补与节能降耗,对于发展“以煤为基多能融合”的能源体系具有重要价值和意义。我国的低阶煤资源丰富,伴随着以中低温热解为核心的煤炭分级分质利用产业的发展,大量的煤热解半焦(简称“煤焦”)亟待高值化利用,而煤焦转化通常为煤炭转化的决速步骤
在一定程度上限制了其应用路径。基于煤与天然气热转化的主要特征,简述了煤与天然气协同转化的工艺特点及相关研究,重点围绕煤炭转化的中间体——煤焦与天然气协同转化联产功能碳材料与氢气/合成气方向,从煤焦转化与甲烷裂解协同、煤焦转化与甲烷干重整协同和煤焦与中低温热解煤气协同转化三方面进行了综合评述,并展望了未来的发展方向。
The synergistic conversion of coal and natural gas can help to achieve complementary carbon and hydrogen elements of the two energy resources and to achieve energy conservation and reduction of consumption
which has great value and significance for the development of an energy system based on coal with multi-energy integration. China is rich in low-rank coal resources
and with the development of coal classification and graded utilization industry via medium-low temperature pyrolysis
a large number of coal pyrolysis semi-coke (referred to as “coal char”) is in urgent need of high-value conversion and utilization. Especially
the conversion of coal char is usually the decisive step of coal conversion
which limits its application paths to some extent. Based on the main characteristics of thermal conversion of coal and natural gas
the process features and the related works about synergistic conversion of coal and natural gas were briefly described
focusing on the research of synergistic conversion of coal char (as an intermediate of coal conversion) and natural gas for co-production of carbon materials and hydrogen/syngas. A comprehensive review was conducted from three aspects: Integrating coal char conversion and methane cracking
integrating coal char conversion and methane dry reforming
and synergistic conversion of coal char and coal pyrolysis gas obtained at medium-low temperature. The future development direction was also prospected.
北京商报 . “两增两减”背后 我国能源转型小步快跑 [EB/OL ] . 北京 : 北京商报 , ( 2023-04-16 )[ 2025-04-08 ] . https://baijiahao.baidu.com/s?id=1763341523064594223&wfr=spider&for=pc https://baijiahao.baidu.com/s?id=1763341523064594223&wfr=spider&for=pc .
BBN . Behind the “two increases and two reductions”-China’s energy transition is making slow but steady progress . Beijing : BBN , ( 2023-04-16 )[ 2025-04-08 ] . https://baijiahao.baidu.com/s?id=1763341523064594223&wfr=spider&for=pc https://baijiahao.baidu.com/s?id=1763341523064594223&wfr=spider&for=pc .
人民资讯 . 低阶煤清洁利用大有可为 [EB/OL ] . 北京 : 人民资讯 , ( 2021-08-26 )[ 2025-04-08 ] . https://baijiahao.baidu.com/s?id=1709149731311976388&wfr=spider&for=pc https://baijiahao.baidu.com/s?id=1709149731311976388&wfr=spider&for=pc .
PI . There is great potential for the clean utilization of low-grade coal . Beijing : PI , ( 2021-08-26 )[ 2025-04-08 ] . https://baijiahao.baidu.com/s?id=1709149731311976388&wfr=spider&for=pc https://baijiahao.baidu.com/s?id=1709149731311976388&wfr=spider&for=pc .
电联新媒 . 谢克昌: 面向2035年我国能源发展的思考与建议 [EB/O L ] . 北京 : 电联新媒 , ( 2022-12-27 )[ 2025-04-08 ] . http://www.chinapower.com.cn/zk/zjgd/20221227/181329.html http://www.chinapower.com.cn/zk/zjgd/20221227/181329.html .
TNM . Xie Kechang: Thoughts and suggestions on China’s energy development by 2035 . Beijing : TNM , ( 2022-12-27 )[ 2025-04-08 ] . http://www.chinapower.com.cn/zk/zjgd/20221227/181329.html http://www.chinapower.com.cn/zk/zjgd/20221227/181329.html .
立木信息咨询 . 2023年中国兰炭行业市场发展规模与未来预测 [EB/OL ] . 深圳 : 立木信息咨询 , ( 2023-08-31 )[ 2025-04-08 ] . https://baijiahao.baidu.com/s?id=1775715538569367153&wfr=spider&for=pc https://baijiahao.baidu.com/s?id=1775715538569367153&wfr=spider&for=pc .
LMCMR . The market development scale and future forecast of China’s semi coke industry in 2023 . Shenzhen : LMCMR , ( 2023-08-31 )[ 2025-04-08 ] . https://baijiahao.baidu.com/s?id=1775715538569367153&wfr=spider&for=pc https://baijiahao.baidu.com/s?id=1775715538569367153&wfr=spider&for=pc .
王双明 , 师庆民 , 王生全 , 等 . 富油煤的油气资源属性与绿色低碳开发 [J ] . 煤炭学报 , 2021 , 46 ( 5 ): 1365 - 1377 .
WANG S M , SHI Q M , WANG S Q , et al . Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas [J ] . Journal of China Coal Society , 2021 , 46 ( 5 ): 1365 - 1377 .
吴澳燕 . 兰炭行业市场运行现状,兰炭行业发展前景展2023 [EB/OL ] . 深圳 : 中研网 , ( 2023-02-21 )[ 2025-04-08 ] . https://www.chinairn.com/news/20230221/140339412.shtml https://www.chinairn.com/news/20230221/140339412.shtml .
WU A Y . Current market operation status of the blue carbon industry and the development prospects of the blue carbon industry in 2023 [EB/OL ] . Shenzhen : ChinaIRN . COM , ( 2023-02-21 )[ 2025-04-08 ] . https://www.chinairn.com/news/20230221/140339412.shtml https://www.chinairn.com/news/20230221/140339412.shtml .
DENG L H , ZHAO Y J , SUN S Z , et al . Review on thermal conversion characteristics of coal in O 2 /H 2 O atmosphere [J ] . Fuel Processing Technology , 2022 , 232 : 107266 .
DENG L H , ZHANG W D , SUN S Z , et al . Effect of pressure on the structure and reactivity of demineralized coal during O 2 /H 2 O thermal conversion process [J ] . Energy , 2022 , 244 : 122632 .
HARRIS D , ROBERTS D G . Coal gasification and conversion [M ] . The coal handbook . Cambridge : Woodhead Publishing , 2023 : 665 - 691 .
AYODELE F O , MUSTAPA S I , AYODELE B V . An overview of economic analysis and environmental impacts of natural gas conversion technologies [J ] . Sustainability , 2020 , 12 ( 23 ): 10148 .
ISHAQ H , CRAWFORD C . Towards less carbon-intensive blue hydrogen: Integrated natural gas reforming and CO 2 capture approach [J ] . Journal of Environmental Chemical Engineering , 2025 , 13 ( 2 ): 115043 .
王静 . 甲烷CO 2 重整与煤热解耦合过程的焦油生成规律 [D ] . 大连 : 大连理工大学 , 2008 .
WANG J . Tar formation mechanism in the coupling process of methane CO 2 reforming and coal pyrolysis [D ] . Dalian : Dalian University of Technology , 2008 .
王鹏飞 . 煤热解与甲烷二氧化碳重整耦合过程中焦油的形成机理及组成分析 [D ] . 大连 : 大连理工大学 , 2011 .
WANG P F . Formation mechanism and composition analysis of tar in the coupling process of coal pyrolysis and methane carbon dioxide reforming [D ] . Dalian : Dalian University of Technology , 2011 .
靳立军 , 李扬 , 胡浩权 . 甲烷活化与煤热解耦合过程提高焦油产率研究进展 [J ] . 化工学报 , 2017 , 68 ( 10 ): 3669 - 3677 .
JIN L J , LI Y , HU H Q . Research progress of integrated methane activation with coal pyrolysis for improving coal tar yield [J ] . CIESC Journal , 2017 , 68 ( 10 ): 3669 - 3677 .
ZHANG J , JIN L , LIU S , et al . Mesoporous carbon prepared from direct coal liquefaction residue for methane decomposition [J ] . Carbon , 2012 , 50 ( 3 ): 952 - 959 .
ZHANG J B , JIN L J , LI Y , et al . Hierarchical porous carbon catalyst used for simultaneous preparation of hydrogen and fibrous carbon by catalytic methane decomposition [J ] . International Journal of Hydrogen Energy , 2013 , 38 ( 21 ): 8732 - 8740 .
ZHANG G J , DU Y N , XU Y , et al . Effects of preparation methods on the properties of cobalt/carbon catalyst for methane reforming with carbon dioxide to syngas [J ] . Journal of Industrial and Engineering Chemistry , 2014 , 20 ( 4 ): 1677 - 1683 .
ZHANG G J , DONG Y , FENG M R , et al . CO 2 reforming of CH 4 in coke oven gas to syngas over coal char catalyst [J ] . Chemical Engineering Journal , 2010 , 156 ( 3 ): 519 - 523 .
XU L , LIU Y N , LI Y J , et al . Catalytic CH 4 reforming with CO 2 over activated carbon based catalysts [J ] . Applied Catalysis A: General , 2014 , 469 : 387 - 397 .
XU L , DUAN L E , TANG M C , et al . Catalytic CO 2 reforming of CH 4 over Cr-promoted Ni/char for H 2 production [J ] . International Journal of Hydrogen Energy , 2014 , 39 ( 19 ): 10141 - 10153 .
卞潮渊 , 慕韩锋 . 基于煤和天然气联合制取合成气工艺研究进展 [J ] . 化工进展 , 2016 , 35 : 3136 - 3141 .
BIAN C Y , MU H F . Research progress based on coal and natural gas to produce syngas [J ] . Chemical Industry and Engineering Progress , 2016 , 35 : 3136 - 3141 .
刘军 , 徐红东 , 朱春鹏 , 等 . 煤—天然气气流床共气化制合成气技术研发进展 [J ] . 煤炭加工与综合利用 , 2020 , 4 : 40 - 43 .
LIU J , XU H D , ZHU C P , et al . Research and development progress of coal-natural entrained flow co-gasification to syngas [J ] . Coal Processing & Comprehensive Utilization , 2020 , 4 : 40 - 43 .
田原宇 , 谢克昌 , 乔英云 , 等 . 碳中和约束下的煤化工产业展望 [J ] . 中外能源 , 2022 , 27 ( 5 ): 17 - 23 .
TIAN Y Y , XIE K C , QIAO Y Y , et al . Prospects of coal chemical industry under the constraints of carbon neutrality [J ] . Sino-Global Energy , 2022 , 27 ( 5 ): 17 - 23 .
王辅臣 . 煤气化技术在中国: 回顾与展望 [J ] . 洁净煤技术 , 2021 , 27 ( 1 ): 1 - 33 .
WANG F C . Coal gasification technologies in China: Review and prospect [J ] . Clean Coal Technology , 2021 , 27 ( 1 ): 1 - 33 .
ZHANG J B , ZHANG G R , QI M , et al . Co-production of hydrogen-rich gas and porous carbon by partial gasification of coal char [J ] . Chemical Papers , 2018 , 72 : 273 - 287 .
YU G , YU D X , LIU F Q , et al . Different impacts of magnesium on the catalytic activity of exchangeable calcium in coal gasification with CO 2 and steam [J ] . Fuel , 2020 , 266 : 117050 .
BAI Y H , LV P , YANG X H , et al . Gasification of coal char in H 2 O/CO 2 atmospheres: Evolution of surface morphology and pore structure [J ] . Fuel , 2018 , 218 : 236 - 246 .
ALVES L , PEREIRA V , LAGARTEIRA T , et al . Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements [J ] . Renewable and Sustainable Energy Reviews , 2021 , 137 : 110465 .
FAN Z Y , WENG W , ZHOU J , et al . Catalytic decomposition of methane to produce hydrogen: A review [J ] . Journal of Energy Chemistry , 2021 , 58 : 415 - 430 .
李忠 , 张鹏 , 孟凡会 , 等 . 双碳模式下碳一化工技术发展趋势 [J ] . 洁净煤技术 , 2022 , 28 ( 1 ): 1 - 11 .
LI Z , ZHANG P , MENG F H , et al . Trend in development of carbon-one chemical technology under model of emission peak and neutrality of carbon dioxide [J ] . Clean Coal Technology , 2022 , 28 ( 1 ): 1 - 11 .
UPHAM D C , AGARWAL V , KHECHFE A , et al . Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon [J ] . Science , 2017 , 358 ( 6365 ): 917 - 921 .
KANG D , PALMER C , MANNINI D , et al . Catalytic methane pyrolysis in molten alkali chloride salts containing iron [J ] . ACS Catalysis , 2020 , 10 ( 13 ): 7032 - 7042 .
PARKINSON B , PATZSCHKE C F , NIKOLIS D , et al . Molten salt bubble columns for low-carbon hydrogen from CH 4 pyrolysis: Mass transfer and carbon formation mechanisms [J ] . Chemical Engineering Journal , 2021 , 417 : 127407 .
RAHIMI N , KANG D , GELINAS J , et al . Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts [J ] . Carbon , 2019 , 151 : 181 - 191 .
CHEN L N , SONG Z G , ZHANG S C , et al . Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis [J ] . Science , 2023 , 381 : 857 - 861 .
ZHANG J B , QI M , ZHANG G R , et al . Co-production of hydrogen and fibrous carbons by methane decomposition using K 2 CO 3 /carbon hybrid as the catalyst [J ] . International Journal of Hydrogen Energy , 2017 , 42 ( 16 ): 11047 - 11052 .
ZHANG D M , LU L B , REN Y F , et al . K 2 CO 3 -catalytic supercritical water gasification of coal with NaAlO 2 addition to inhibit ash agglomeration and decrease the volatility of alkali metals [J ] . Fuel , 2021 , 303 : 121312 .
MEI Y , WANG Z , FANG Y , et al . CO 2 catalytic gasification with NaAlO 2 addition for its low-volatility and tolerant to deactivate [J ] . Fuel , 2019 , 242 : 160 - 166 .
MEI Y , WANG Z Q , ZHOU X , et al . Pressured carbon dioxide hydrothermal leaching of catalytic gasification ash for dealkalization of solid waste, sodium catalyst recovery and carbon dioxide utilization [J ] . Journal of Cleaner Production , 2020 , 247 : 119109 .
YUAN X Z , FAN S M , CHOI S W , et al . Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K 2 CO 3 -catalyzed steam gasification system [J ] . Applied Energy , 2017 , 195 : 850 - 860 .
ZHANG J B , QI M , CHEN H Y , et al . Methane decomposition with some CO 2 as co-feed: Co-production of syngas and carbon fibers/microspheres by using a hybrid of K 2 CO 3 and coal char [J ] . International Journal of Hydrogen Energy , 2018 , 43 ( 12 ): 6066 - 6075 .
ZHANG J B , GE Y J , GAO F L , et al . Synergistic conversion of coal char and methane for syngas and carbon-based supercapacitor electrodes [J ] . Journal of Colloid and Interface Science , 2020 , 562 : 235 - 243 .
ZHANG J B , XIE W T , LI X , et al . In situ generation of nickel/carbon catalysts by partial gasification of coal char and application for methane decomposition [J ] . International Journal of Hydrogen Energy , 2019 , 44 ( 5 ): 2633 - 2644 .
ZHANG J B , XIE W T , LI X , et al . Methane decomposition over Ni/carbon catalysts prepared by selective gasification of coal char [J ] . Energy Conversion and Management , 2018 , 177 : 330 - 338 .
ZHANG J B , REN M Y , LI X , et al . Ni-based catalysts prepared for CO 2 reforming and decomposition of methane [J ] . Energy Conversion and Management , 2020 , 205 : 112419 .
ZHANG J B , LI X , XIE W T , et al . K 2 CO 3 -promoted methane pyrolysis on nickel/coal-char hybrids [J ] . Journal of Analytical and Applied Pyrolysis , 2018 , 136 : 53 - 61 .
ZHANG J B , LI X , XIE W T , et al . Handy synthesis of robust Ni/carbon catalysts for methane decomposition by selective gasification of pine sawdust [J ] . International Journal of Hydrogen Energy , 2018 , 43 ( 42 ): 19414 - 19419 .
YANG W C , ZHANG J B , ZHANG L , et al . Coal char gasification for co-production of fuel gas and methane decomposition catalysts [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 29 ): 13815 - 13827 .
ZHANG J B , REN M Y , LI X , et al . Syngas production by integrating CO 2 partial gasification of pine sawdust and methane pyrolysis over the gasification residue [J ] . International Journal of Hydrogen Energy , 2019 , 44 : 19742 - 19754 .
GRIM R G , HUANG Z , GUARNIERI M T , et al . Transforming the carbon economy: Challenges and opportunities in the convergence of low-cost electricity and reductive CO 2 utilization [J ] . Energy & Environmental Science , 2020 , 13 ( 2 ): 472 - 494 .
ABDULRASHEED A , JALIL A A , GAMBO Y , et al . A review on catalyst development for dry reforming of methane to syngas: Recent advances [J ] . Renewable & Sustainable Energy Reviews , 2019 , 108 : 175 - 193 .
ALIPOUR Z , BORUGADDA V B , WANG H , et al . Syngas production through dry reforming: A review on catalysts and their materials, preparation methods and reactor type [J ] . Chemical Engineering Journal , 2023 , 452 : 139416 .
CHEN S L , ABDEL-MAGEED A M , DYBALLA M , et al . Raising the CO x methanation activity of a Ru/ γ -Al 2 O 3 catalyst by activated modification of metal-support interactions [J ] . Angewandte Chemie International Edition , 2020 , 59 ( 50 ): 22763 - 22770 .
LI L Z , YAN K S , CHEN J , et al . Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide [J ] . Science of The Total Environment , 2019 , 657 : 1357 - 1367 .
WANG D D , LITTLEWOOD P , MARKS T J , et al . Coking can enhance product yields in the dry reforming of methane [J ] . ACS Catalysis , 2022 , 12 ( 14 ): 8352 - 8362 .
REN L , ZHANG J B , WANG J Y , et al . Electrochemical performance evaluation of the spent carbon-based catalysts recycled from methane dry reforming [J ] . Fuel , 2024 , 365 : 131204 .
HE T , SUN Z Q , WU J H , et al . Catalytic performance of coal char for the methane reforming process [J ] . Chemical Engineering & Technology , 2014 , 38 ( 1 ): 68 - 74 .
HAGHIGHI M , SUN Z Q , WU J H , et al . On the reaction mechanism of CO 2 reforming of methane over a bed of coal char [J ] . Proceedings of the Combustion Institute , 2007 , 31 ( 2 ): 1983 - 1990 .
TANG W , CAO J P , CHEN C C , et al . Lignite-char-supported highly dispersed ultrasmall Ni-Co alloy for stably dry reforming of methane at low temperature [J ] . Chemical Engineering Science , 2023 , 281 : 119165 .
周娅兰 , 王建友 , 杨文成 , 等 . 煤焦-Ni复合物催化甲烷干重整及其反应后形成碳材料的电化学性能研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 6 ): 54 - 62 .
ZHOU Y L , WANG J Y , YANG W C , et al . Study on dry reforming of methane catalyzed by coal char-Ni composite and electrochemical performance of formed carbon materials after reaction [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 6 ): 54 - 62 .
ADAMS II T A , BARTON P I . Combining coal gasification and natural gas reforming for efficient polygeneration [J ] . Fuel Processing Technology , 2011 , 92 ( 3 ): 639 - 655 .
李超 , 李广民 , 夏芝香 , 等 . 50 MW循环流化床煤炭分级转化多联产技术开发 [J ] . 洁净煤技术 , 2021 , 27 ( 5 ): 157 - 163 .
LI C , LI G M , XIA Z X , et al . Development of 50 MW CFB coal pyrolysis and combustion multi-generation technology [J ] . Clean Coal Technology , 2021 , 27 ( 5 ): 157 - 163 .
敬旭业 , 王坤 , 董鹏飞 , 等 . 240 t/d固体热载体粉煤热解工艺及中试研究 [J ] . 洁净煤技术 , 2018 , 24 ( 1 ): 50 - 56 .
JING X Y , WANG K , DONG P F , et al . Pilot plant study on 240 t/d pulverized coal pyrolysis technology with solid heat carrier [J ] . Clean Coal Technology , 2018 , 24 ( 1 ): 50 - 56 .
宋文立 , 李松庚 , 都林 , 等 . 低阶煤热解多联产与混合发电系统 [J ] . 过程工程学报 , 2018 , 18 ( 5 ): 893 - 899 .
SONG W L , LI S G , DU L , et al . Low rank coal pyrolysis poly-generation and hybrid power system [J ] . Chinese Journal of Process Engineering , 2018 , 18 ( 5 ): 893 - 899 .
郑锦涛 . 煤气热载体分段多层低阶煤热解成套工业化技术(SM-GF)的应用 [J ] . 煤炭加工与综合利用 , 2018 , 8 : 55 - 58+74 .
ZHENG J T . Application of industrial technology (SM-GF) of coal gas heat carrier segment multilayer low rank coal pyrolysis [J ] . Coal Processing & Comprehensive Utilization , 2018 , 8 : 55 - 58+74 .
秦黄涛 . 煤焦与甲烷/热解煤气协同转化联产电极材料与合成气 [D ] . 西安 : 西北大学 , 2023 .
QIN H T . Synergistic conversion of coal char and methane/coal pyrolysis gas for co-production of electrode materials and syngas [D ] . Xi’an : Northwest University , 2023 .
LIU H , GUO W . Comparative study on life cycle energy consumption, carbon emissions and economic performance of various coke-oven gas utilization schemes [J ] . Fuel , 2023 , 332 : 125706 .
DI Z C , LEI F X , JING J K , et al . Technical alternatives for coke oven gas utilization in China: A comparative analysis of environment-economic-strategic perspectives [J ] . Environmental Science and Ecotechnology , 2024 , 21 : 100395 .
ZHANG Y L , TIAN Z X , CHEN X N , et al . Technology-environment-economy assessment of high-quality utilization routes for coke oven gas [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 1 ): 666 - 685 .
LI S , QIN Y , TANG D Z , et al . A comprehensive review of deep coalbed methane and recent developments in China [J ] . International Journal of Coal Geology , 2023 , 279 : 104369 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构