
浏览全部资源
扫码关注微信
大连理工大学 化工学院,精细化工全国重点实验室,辽宁 大连 116024
薛浩强(1999—),硕士研究生,研究方向为二氧化碳加氢制液态燃料,E-mail:17741102076@163.com。
李文慧(1989—),博士,副教授,研究方向为二氧化碳加氢转化,E-mail:liwh@dlut.edu.cn;
郭新闻(1967—),博士,教授,研究方向为新能源催化转化,E-mail:guoxw@dlut.edu.cn。
收稿:2025-04-01,
修回:2025-04-11,
纸质出版:2026-01-25
移动端阅览
薛浩强,李文慧,刘炳昱等.疏水改性ZSM-5对双功能催化剂NaFe/ZSM-5催化CO2加氢制绿色航空煤油性能的影响[J].低碳化学与化工,2026,51(1):16-23.
XUE Haoqiang,LI Wenhui,LIU Bingyu,et al.Influence of ZSM-5 after hydrophobic modification on catalytic performances of NaFe/ZSM-5 for CO2 hydrogenation to sustainable aviation fuels[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):16-23.
薛浩强,李文慧,刘炳昱等.疏水改性ZSM-5对双功能催化剂NaFe/ZSM-5催化CO2加氢制绿色航空煤油性能的影响[J].低碳化学与化工,2026,51(1):16-23. DOI: 10.12434/j.issn.2097-2547.20250148.
XUE Haoqiang,LI Wenhui,LIU Bingyu,et al.Influence of ZSM-5 after hydrophobic modification on catalytic performances of NaFe/ZSM-5 for CO2 hydrogenation to sustainable aviation fuels[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):16-23. DOI: 10.12434/j.issn.2097-2547.20250148.
CO
2
加氢制绿色航空煤油不仅可以助力实现 “碳中和”,也有利于航空业的可持续发展。但CO
2
为惰性小分子难以活化、C—C耦合定向生成绿色航空煤油组分(C
8
~C
16
烃类)难度较高等问题,给催化剂设计带来了较大挑战。采用丙基三甲氧基硅烷(PTMS)对ZSM-5分子筛进行了疏水改性,成功制备了具有不同水接触角的疏水改性ZSM-5分子筛,并将其与Na-Fe
3
O
4
组合构筑了双功能催化剂用于CO
2
加氢反应。结果表明,丙基三甲氧基硅烷改性不仅能够提高ZSM-5分子筛的疏水性,还可以通过疏水基团对ZSM-5分子筛外表面酸性位点的覆盖作用,抑制长链烃产物在分子筛表面的裂解,提升产物中绿色航空煤油组分选择性。在320 ℃、3 MPa以及
n
(H
2
):
n
(CO
2
) = 3:1反应条件下,NaFe/Z5-0.5PTMS在CO
2
加氢反应中催化性能最佳,CO
2
转化率为32.6%,CO选择性仅为9.9%,绿色航空煤油组分选择性为38.8%。
CO
2
hydrogenat
ion to sustainable aviation fuels can not only help achieve “carbon neutrality”
but also support the sustainable development of the aviation industry. However
due to the difficulty in activating CO
2
as an inert molecule and the difficulty in generating sustainable aviation fuels (C
8
~C
16
hydrocarbons) by C—C coupling
catalyst design has faced significant challenges. Propyl trimethoxysilane (PTMS) was used to modify ZSM-5 zeolites
and ZSM-5 zeolites with varying water contact angles were successfully prepared after hydrophobic modification. They were combined with Na-Fe
3
O
4
to construct bifunctional catalysts for CO
2
hydrogenation. The results show that propyl trimethoxysilane modification can not only enhance the hydrophobicity of ZSM-5 zeolites
but also inhibit the cracking of long-chain hydrocarbons on the surface of ZSM-5 zeolites to improve the sustainable aviation fuels selectivity by the acidic sites coverage on the outer surface of ZSM-5 zeolites with hydrophobic groups. Under the reaction conditions of 320 ℃
3 MPa and
n
(H
2
):
n
(CO
2
) = 3:1
NaFe/Z5-0.5PTMS has the best catalytic performance for CO
2
hydrogenation
with the CO
2
conversion rate of 32.6%
CO selectivity of 9.9% and sustainable aviation fuels selectivity of 38.8%.
JIANG X , NIE X W , GUO X W , et al . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J ] . Chemical Reviews , 2020 , 120 : 7984 - 8034 .
赵玉 , 张嘉兴 , 王明瑞 , 等 . Ni@Silicalite-1催化剂的制备及其催化CO 2 加氢制CH 4 与CO性能研究 [J ] . 低碳化学与化工 , 2023 , 48 ( 5 ): 38 - 45 .
ZHAO Y , ZHANG J X , WANG M R , et al . Research on preparation of Ni@Silicalite-1 catalyst and its catalytic performance in hydrogenation of CO 2 to CH 4 and CO [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 5 ): 38 - 45 .
夏瑶靓 , 边凯 , 刘思蕊 , 等 . PtSn@S-1 & β -Mo 2 C串联催化剂CO 2 氧化丙烷脱氢制丙烯性能研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 7 ): 96 - 103 .
XIA Y L , BIAN K , LIU S R , et al . Study on performance of PtSn@S-1 & β -Mo 2 C tandem catalyst in CO 2 -oxidative propane dehydrogenation to propylene [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 7 ): 96 - 103 .
LI W H , NIE X W , YANG H , et al . Crystallographic dependence of CO 2 hydrogenation pathways over HCP-Co and FCC-Co catalysts [J ] . Applied Catalysis B: Environmental , 2022 , 315 : 121529 .
LI W H , LIU Y , MU M C , et al . Organic acid-assisted preparation of highly dispersed Co/ZrO 2 catalysts with superior activity for CO 2 methanation [J ] . Applied Catalysis B: Environmental , 2019 , 254 : 531 - 540 .
WASTON M J , MACHADO P G , DA SILVA A V , et al . Sustainable aviation fuel technologies, costs, emissions, policies, and markets: A critical review [J ] . Journal of Cleaner Production , 2024 , 449 : 141472 .
WEI H J , LIU W Z , CHEN X Y , et al . Renewable bio-jet fuel production for aviation: A review [J ] . Fuel , 2019 , 254 : 115599 .
BERGERO C , GOSENELL G K , GIELEN D , et al . Pathways to net-zero emissions from aviation [J ] . Nature Sustainability , 2023 , 6 ( 4 ): 404 - 414 .
LI W H , WANG H Z , JIANG X , et al . A short review of recent advances in CO 2 hydrogenation to hydrocarbons over heterogeneous catalysts [J ] . RSC Advances , 2018 , 8 ( 14 ): 7651 - 7669 .
JENSEN L L , BONNEFOY P A , HILEMAN J I , et al . The carbon dioxide challenge facing US aviation and paths to achieve net zero emissions by 2050 [J ] . Progress in Aerospace Sciences , 2023 , 141 : 100921 .
NAKANO Y , SANO F , AKIMOTO K . Impacts of decarbonization technologies in air transport on the global energy system [J ] . Transportation Research Part D: Transport and Environment , 2022 , 110 : 103417 .
FRAGKOS P . Decarbonizing the international shipping and aviation sectors [J ] . Energies , 2022 , 15 ( 24 ): 9650 - 9650 .
周向坤 , 王明瑞 , 王浩 , 等 . 不同形貌ZnO催化CO 2 加氢性能研究 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 41 - 48 .
ZHOU X K , WANG M R , WANG H , et al . Study on catalytic performance of ZnO with different morphologies for CO 2 hydrogenation [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 41 - 48 .
LI W H , ZHANG G H , JIANG X , et al . CO 2 hydrogenation on unpromoted and M-promoted Co/TiO 2 catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal-support interaction on tuning product distribution [J ] . ACS Catalysis , 2019 , 9 ( 4 ): 2739 - 2751 .
ZHOU W , CHENG K , KANG J C , et al . New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO 2 into hydrocarbon chemicals and fuels [J ] . Chemical Society Reviews , 2019 , 48 ( 12 ): 3193 - 3228 .
HWANG S M , HAN S J , PARK H G , et al . Atomically alloyed Fe-Co catalyst derived from a N-coordinated Co single-atom structure for CO 2 hydrogenation [J ] . ACS Catalysis , 2021 , 11 ( 4 ): 2267 - 2278 .
ARSLAN M T , TIAN G , ALI B , et al . Highly selective conversion of CO 2 or CO into precursors for kerosene-based aviation fuel via an aldol-aromatic mechanism [J ] . ACS Catalysis , 2022 , 12 ( 3 ): 2023 - 2033 .
GU M W , DAI S , QIU R F , et al . Structure-activity relationships of copper-and potassium-modified iron oxide catalysts during reverse water-gas shift reaction [J ] . ACS Catalysis , 2021 , 11 ( 20 ): 12609 - 12619 .
SHI X P , LI H J , SONG Z Y , et al . Quantitative composition-property relationship of aviation hydrocarbon fuel based on comprehensive two-dimensional gas chromatography with mass spectrometry and flame ionization detector [J ] . Fuel , 2017 , 200 : 395 - 406 .
ZHANG L , DANG Y , ZHOU X H , et al . Direct conversion of CO 2 to a jet fuel over CoFe alloy catalysts [J ] . The Innovation , 2021 , 2 ( 4 ): 100170 .
ZHU J , SHAIKHUTDINOV S , CUENYA B R . Structure-reactivity relationships in CO 2 hydrogenation to C 2+ chemicals on Fe-based cat alysts [J ] . Chemical Science , 2025 , 16 ( 3 ): 1071 - 1092 .
LIU R J , XU Y , QIAO Y , et al . Factors influencing the Fischer-Tropsch synthesis performance of iron-based catalyst: Iron oxide dispersion, distribution and reducibility [J ] . Fuel Processing Technology , 2015 , 139 : 25 - 32 .
MOODLEY D , BOTHA T , CROUS R , et al . Catalysis for sustainable aviation fuels: Focus on Fischer-Tropsch catalysis [J ] . Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies , 2024 , 1/ 2 / 3 : 73 - 116 .
WANG W J , JIANG X , WANG X X , et al . Fe-Cu bimetallic catalysts for selective CO 2 hydrogenation to olefin-rich C 2+ hydrocarbons [J ] . Industrial & Engineering Chemistry Research , 2018 , 57 ( 13 ): 4535 - 4542 .
WANG W , WANG S P , MA X B , et al . Recent advances in catalytic hydrogenation of carbon dioxide [J ] . Chemical Society Reviews , 2011 , 40 ( 7 ): 3703 - 3727 .
GAO P , LI S G , BU X N , et al . Direct conversion of CO 2 into liquid fuels with high selectivity over a bifunctional catalyst [J ] . Nature Chemistry , 2017 , 9 ( 10 ): 1019 - 1024 .
NI Y M , CHEN Z Y , FU Y , et al . Selective conversion of CO 2 and H 2 into aromatics [J ] . Nature Communications 2018 , 9 ( 1 ): 3457 .
ZHANG X B , ZHANG A F , JIANG X , et al . Utilization of CO 2 for aromatics production over ZnO/ZrO 2 -ZSM-5 tandem catalyst [J ] . Journal of CO 2 Utilization , 2019 , 29 : 140145 .
WEI J , YAO R W , GE Q J , et al . Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO 2 hydrogenation [J ] . Applied Catalysis B: Environmental , 2021 , 283 : 119648 .
XU Y F , LIANG H , LI R , et al . Insights into the diffusion behaviors of water over hydrophilic/hydrophobic catalysts during the conversion of syngas to high-quality gasoline [J ] . Angewandte Chemie International Edition , 2023 , 62 ( 37 ): e202306786 .
ZHANG C W , WU X Q , ZHANG Y , et al . Water-controlled coking dynamics during high-pressure methanol-to-olefins reaction over SAPO-34 [J ] . ACS Catalysis , 2025 , 15 : 1553 - 1562 .
CHAU H K , MAI H D , GUMIDYALA A , et al . Effect of water on cumene dealkylation over H-ZSM-5 zeolites [J ] . ACS Catalysis , 2023 , 13 ( 13 ): 9158 - 9170 .
PAGE J R , LECLERC H O , SMOLITSKY P , et al . Improving yields and catalyst reuse for palmitic acid aromatization in the presence of pressurized water [J ] . ACS Sustainable Chemistry & Engineering , 2022 , 10 ( 17 ): 5659 - 5673 .
FANG W , WANG C T , LIU Z Q , et al . Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration [J ] . Science , 2022 , 377 ( 6604 ): 406 - 410 .
HAN X L , WANG L , LI J D , et al . Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane [J ] . Applied Surface Science , 2011 , 257 ( 22 ): 9525 - 9531 .
XU Y F , LI X Y , GAO J H , et al . A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products [J ] . Science , 2021 , 371 ( 6529 ): 610 - 613 .
SCHLUMBERGER C , THOMMES M . Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—A tutorial review [J ] . Advanced Materials Interfaces , 2021 , 8 ( 4 ): 2002181 .
SERRANO D P , ESCOLA J M , PIZARRO P . Development of hierarchical porosity in zeolites by using organosilane-based strategies [M ] //GARCÍA-MARTÍNEZ J, LI K H. Mesoporous zeolites : Preparation, characterization and applications. Germany: Wiley-VCH , 2015 : 157 - 198 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533