
浏览全部资源
扫码关注微信
1.四川大学 化学工程学院,四川 成都 610207
2.四川大学 新能源与低碳技术研究院,四川 成都 610207
严亚韩(2000—),硕士研究生,研究方向为多相催化,E-mail:yahanyan2020@163.com。
刘长军(1979—),博士,副教授,研究方向为多相催化、化工新工艺,E-mail:liuchangjun@scu.edu.cn。
收稿:2025-03-18,
修回:2025-04-15,
纸质出版:2026-01-25
移动端阅览
严亚韩,吴潘,何坚等.Ni/WO3-ZrO2催化1,4-丁烯二醇临氢异构制2-羟基四氢呋喃及其反应动力学研究[J].低碳化学与化工,2026,51(1):63-72.
YAN Yahan,WU Pan,HE Jian,et al.Study on hydroisomerization of 1,4-butenediol to 2-hydroxytetrahydrofuran catalyzed by Ni/WO3-ZrO2 and its reaction kinetics[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):63-72.
严亚韩,吴潘,何坚等.Ni/WO3-ZrO2催化1,4-丁烯二醇临氢异构制2-羟基四氢呋喃及其反应动力学研究[J].低碳化学与化工,2026,51(1):63-72. DOI: 10.12434/j.issn.2097-2547.20250117.
YAN Yahan,WU Pan,HE Jian,et al.Study on hydroisomerization of 1,4-butenediol to 2-hydroxytetrahydrofuran catalyzed by Ni/WO3-ZrO2 and its reaction kinetics[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):63-72. DOI: 10.12434/j.issn.2097-2547.20250117.
2-羟基四氢呋喃(2-HTHF)是重要的精细化工原料,构建金属中心和酸中心强度可控的双功能催化剂是经顺-1
4-丁烯二
醇(
cis
-BED)临氢异构制2-HTHF的关键。采用等体积浸渍法制备了一系列Ni/WO
3
-ZrO
2
双功能催化剂,其结构经NH
3
-TPD、XPS和XRD等表征。分析了还原温度、还原时间、Ni和WO
3
负载量(质量分数)及Ni和WO
3
分散性等因素对催化剂结构和催化性能的影响,并研究了优选催化剂在设定条件下催化
cis
-BED临氢异构反应的动力学。结果表明,在催化剂用量为0.2 g、反应温度为200 ℃、H
2
压力为0.4 MPa和气时空速为37.8 L/(g·h)的条件下,600 ℃下还原2 h所得10%Ni/20%WO
3
-ZrO
2
-HT(Ni、WO
3
负载量分别为10%、20%)的催化性能最佳,其
cis
-BED转化率和2-HTHF选择性分别为67.9%和30.1%。建立的反应网络和反应动力学模型能够较好地描述10%Ni/20%WO
3
-ZrO
2
-HT催化的
cis
-BED临氢异构反应过程,即
cis
-BED异构化生成2-HTHF的主要路径是
cis
-BED先转化为反-1
4-丁烯二醇,再异构化为2-HTHF。
2-hydroxytetrahydrofuran (2-HTHF) is an important fine chemical material. The key to 2-HTHF production via hydroisomerization of
cis
-1
4-butenediol (
cis
-BED) lies in constructing the bifunctional catalyst with controllable metal center and acid strength. A series of Ni/WO
3
-ZrO
2
bifunctional catalysts were prepared by incipient wetness impregnation method and their structures were characterized by NH
3
-TPD
XPS
XRD
etc. The effects of reduction temperatures
reduction time
loading amounts of Ni and WO
3
and dispersions of Ni and WO
3
on the structures and catalytic performances of catalysts were investigated. Additionally
the kinetics of the
cis
-BED hydroisomerization reaction over the optimal catalyst under specified conditions were studied. The results show that under the conditions of catalyst dosage of 0.2 g
reaction temperature of 200 ℃
H
2
pressure of 0.4 MPa and gas hourly space velocity of 37.8 L/(g·h)
10%Ni/20%WO
3
-ZrO
2
-HT (loading amounts of Ni and WO
3
are 10% and 20%
respectively) obtained by reducing at 600 ℃ for 2 h exhibits the best catalytic performance with
cis
-BED conversion rate of 67.9% and 2
-HTHF selectivity of 30.1%
respectively. The established reaction network and kinetic model can effectively describ the
cis
-BED hydroisomerization process catalyzed by 10%Ni/20%WO
3
-ZrO
2
-HT
revealing that the primary pathway for 2-HTHF formation involves the isomerization of
cis
-BED to
trans
-1
4-butenediol
follows by its further conversion to 2-HTHF.
LEITE L , STONKUS V , EDOLFA K , et al . Active phases of supported cobalt catalysts for 2,3-dihydrofuran synthesis [J ] . Journal of Molecular Catalysis A: Chemical , 2004 , 215 ( 1/2 ): 95 - 101 .
LEBEDEV A , LEITE L , FLEISHER M , et al . Tautomerism and vapor-phase transformations of 2-hydroxytetrahydrofuran [J ] . Chemistry of Heterocyclic Compounds , 2000 , 36 ( 7 ): 775 - 778 .
MUSOLINO M G , APA G , DONATO A , et al . Supported palladium catalysts for the selective conversion of cis -2-butene-1,4-diol to 2-hydroxytetrahydrofuran: Effect of metal particle size and support [J ] . Applied Catalysis A: General , 2007 , 325 ( 1 ): 112 - 120 .
TAKESHI O . Preparation of 2 -hydroxytetrahydrofuran : JPS5425017B2 [P ] . 1974-04-27 .
LIN J , KNIFTON J F . Hydroformylation of allyl alcohol : EP0150943A2 [P ] . 1985-08-07 .
刘响 , 廖启江 , 张敏卿 . 1,4-丁炔二醇加氢过程研究进展 [J ] . 化工进展 , 2017 , 36 ( 8 ): 2787 - 2797 .
LIU X , LIAO Q J , ZHANG M Q . Research progress of 1,4-butynediol hydrogenation process [J ] . Chemical Industry and Engineering Progress , 2017 , 36 ( 8 ): 2787 - 2797 .
周港 , 谭平华 , 吴潘 , 等 . 1,4-丁炔二醇选择性加氢催化剂:Pd/ZrO 2 及其碱金属改性 [J ] . 精细化工 , 2024 , 41 ( 3 ): 640 - 648 .
ZHOU G , TAN H P , WU P , et al . Selective hydrogenation of 1,4-butynediol to 1,4-butenediol: Pd/ZrO 2 catalyst and alkali metals modification [J ] . Fine Chemicals , 2024 , 41 ( 3 ): 640 - 648 .
MUSOLINO M G , CAIA C V , MAURIELLO F , et al . Hydrogenation versus isomerization in the reaction of cis -2-butene-1,4-diol over supported catalysts: The role of group VIII transition metals in driving the products selectivity [J ] . Applied Catalysis A: General , 2010 , 390 ( 1/2 ): 141 - 147 .
TELKAR M M , RODE C V , JAGANATHAN R , et al . Platinum catalyzed hydrogenation of 2-butyne-1,4-diol [J ] . Journal of Molecular Catalysis A: Chemical , 2002 , 187 ( 1 ): 81 - 93 .
TANIELYAN S , SCHMIDT S , MARIN N , et al . Selective hydrogenation of 2-butyne-1,4-diol to 1,4-butanediol over particulate Raney ® nickel catalysts [J ] . Topics in Catalysis , 2010 , 53 ( 15/16/17/18 ): 1145 - 1149 .
赵芳 . Ni/SiO 2 中Ni存在状态的调控及催化1,4-丁炔二醇加氢反应的研究 [D ] . 太原 : 山西大学 , 2019 .
ZHAO F . Study on the regulation of the presence of Ni in Ni/SiO 2 and catalytic hydrogenation of 1,4-butynediol [D ] . Taiyuan : Shanxi University , 2019 .
MUSOLINO M G , CUTRUPI C M S , DONATO A , et al . Liquid phase hydrogenation of 2-butyne-1,4-diol and 2-butene-1,4-diol isomers over Pd catalysts: Roles of solvent, support and proton on activity and products distribution [J ] . Journal of Molecular Catalysis A: Chemical , 2003 , 195 ( 1/2 ): 147 - 157 .
万晶晶 . 1,4-丁炔二醇可控加氢催化剂的研究 [D ] . 厦门 : 厦门大学 , 2020 .
WAN J J . Study on the controllable hydrogenation catalyst of 1,4-butynediol [D ] . Xiamen : Xiamen University , 2020 .
URZHUNTSEV G A , KODENEV E G , ECHEVSKII G V . Prospects for using Mo- and W-containing catalysts in hydroisomerization: A patent review. II: Catalysts based on molybdenum and tungsten carbides [J ] . 2016 , 8 ( 3 ): 224 - 230 .
BENADDA A , KATRIB A , SOBCZAK J W , et al . Hydroisomerization of n -heptane and dehydration of 2-propanol on bulk and supported WO 2 (H x ) ac on TiO 2 [J ] . Applied Catalysis A: General , 2004 , 260 ( 2 ): 175 - 183 .
LYU Y C , YU Z M , YANG Y , et al . Metal-acid balance in the in-situ solid synthesized Ni/SAPO-11 catalyst for n -hexane hydroisomerization [J ] . Fuel , 2019 , 243 : 398 - 405 .
GARCIA-PEREZ D , LOPEZ-GARCIA A , RENONES P , et al . Influence of nickel loading on the hydroisomerization of n -dodecane with nickel-tungsten oxide-alumina supported catalysts [J ] . Molecular Catalysis , 2022 , 529 : 112556 .
王菊霞 . Ni/SiO 2 催化剂上1,4-丁烯二醇加氢/异构反应性能 [D ] . 太原 : 山西大学 , 2020 .
WANG J X . Study on hydrogenation/isomerization of 1,4-butenediol over Ni/SiO 2 catalyst [D ] . Taiyuan : Shanxi University , 2020 .
KAIM J , SLIWA M , KUTERASINSKI L , et al . Gas-phase hydrogenation and decarbonylation of furfuryl aldehyde over catalysts containing Cu and Ni [J ] . Catalysis Today , 2024 , 441 : 114897 .
ORTEGA-DOMÍNGUEZ R A , VARGAS-VILLAGRÁN H , PEÑALOZA-ORTA C , et al . A facile method to increase metal dispersion and hydrogenation activity of Ni/SBA-15 catalysts [J ] . Fuel , 2017 , 198 : 110 - 122 .
MIYAZAKI S , LI Z , LI L , et al . Chemical looping dry reforming of methane over Ni-modified WO 3 /ZrO 2 : Cooperative work of dispersed tungstate species and Ni over the ZrO 2 surface [J ] . Energy & Fuels , 2023 , 37 ( 11 ): 7945 - 7957 .
SMOLIKOV M D , SHKURENOK V A , KIR’YANOV D I , et al . Active surface formation of tungstated zirconia catalysts for n -heptane isomerization [J ] . Catalysis Today , 2019 , 329 : 63 - 70 .
SCHEITHAUER M , GRASSELLI R K , KNOZINGER H . Genesis and structure of WO x /ZrO 2 solid acid catalysts [J ] . Langmuir , 1998 , 14 ( 11 ): 3019 - 3029 .
LIU C J , SUN J M , BROWN H M , et al . Aqueous phase hydrodeoxygenation of polyols over Pd/WO 3 -ZrO 2 : Role of Pd-WO 3 interaction and hydrodeoxygenation pathway [J ] . Catalysis Today , 2016 , 269 : 103 - 109 .
BARTON D G , SHTEIN M , WILSON R D , et al . Structure and electronic properties of solid acids based on tungsten oxide nanostructures [J ] . The Journal of Physical Chemistry B , 1999 , 103 ( 4 ): 630 - 640 .
ROSS-MEDGAARDEN E I , WACHS I E . Structural determination of bulk and surface tungsten oxides with UV-Vis diffuse reflectance spectroscopy and Raman spectroscopy [J ] . The Journal of Physical Chemistry C , 2007 , 111 ( 41 ): 15089 - 15099 .
BERGUERAND C , YURANOV I , CÁRDENAS-LIZANA F , et al . Size-controlled Pd nanoparticles in 2-butyne-1,4-diol hydrogenation: Support effect and kinetics study [J ] . The Journal of Physical Chemistry C , 2014 , 118 ( 23 ): 12250 - 12259 .
TANIELYAN S K , MORE S R , AUGUSTINE R L , et al . Continuous liquid-phase hydrogenation of 1,4-butynediol to high purity 1,4-butanediol over particulate raney nickel catalyst in a fixed bed reactor [J ] . Organic Process Research & Development , 2017 , 21 ( 3 ): 327 - 335 .
RODE C V , TAYADE P R , NADGERI J M , et al . Continuous hydrogenation of 2-butyne-1,4-diol to 2-butene- and butane-1,4-diols [J ] . Organic Process Research & Development , 2006 , 10 ( 2 ): 278 - 284 .
KIWI-MINSKER L , JOANNET E , RENKEN A . Solvent-free selective hydrogenation of 2-butyne-1,4-diol over structured palladium catalyst [J ] . Industrial & Engineering Chemistry Research , 2005 , 44 ( 16 ): 6148 - 6153 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533