浏览全部资源
扫码关注微信
1.西南石油大学 新能源与材料学院,四川 成都 610500
2.西南石油大学 油气藏地质及开发工程国家重点实验室,四川 成都 610500
3.西南化工研究设计院有限公司 多孔材料与分离转化全国重点实验室, 国家碳一化学工程技术研究中心,四川 成都 610225
黄泽皑(1989—),博士,副教授,研究方向为天然气高值利用,E-mail:zeai.huang@swpu.edu.cn。
周莹(1981—),博士,教授,研究方向为新能源与油气资源协同利用,E-mail:yzhou@swpu.edu.cn。
收稿日期:2025-03-14,
修回日期:2025-04-14,
纸质出版日期:2025-08-25
移动端阅览
黄泽皑,朱旗,胡伟等.光热催化甲烷低碳转化技术进展[J].低碳化学与化工,2025,50(8):92-105.
HUANG Zeai,ZHU Qi,HU Wei,et al.Progress on photothermal catalytic methane low-carbon conversion technology[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):92-105.
黄泽皑,朱旗,胡伟等.光热催化甲烷低碳转化技术进展[J].低碳化学与化工,2025,50(8):92-105. DOI: 10.12434/j.issn.2097-2547.20250101.
HUANG Zeai,ZHU Qi,HU Wei,et al.Progress on photothermal catalytic methane low-carbon conversion technology[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):92-105. DOI: 10.12434/j.issn.2097-2547.20250101.
在“碳中和”目标的推动下,甲烷的高效转化与低碳利用成为能源化学领域的研究热点。传统热催化技术因依赖化石能源与高碳排放面临瓶颈,而太阳能驱动的光热催化技术通过协同光激发与热能活化机制,为甲烷转化提供了新的路径。系统综述了光热催化甲烷蒸汽重整、甲烷干重整与甲烷裂解3种典型技术的研究进展,重点探讨了光热催化在能量传递优化、催化剂设计及系统集成中的创新突破:光热协同效应通过局域光热场重构与电子态调控显著降低了甲烷活化势垒,纳米结构催化剂的界面电荷分离与氧空位工程提高了其抗积炭性能和反应选择性,反应器设计结合储能技术提高了太阳能动态利用效率。尽管在光热催化机制与能质传递方面已取得重要进展,仍需提高广谱吸光材料稳定性和规模化反应器传热传质效率,并优化光-热-物质多场耦合等。未来,需强化多能协同系统开发与智能化调控策略研究,推动光热催化甲烷转化技术向低碳化、高值化的工业应用体系迈进。
Driven by the goal of “carbon neutrality”
the efficient conversion and low-carbon utilization of methane have become a research focus in the field of energy chemistry. Traditional thermal catalytic techniques face bottlenecks due to their reliance on fossil fuels and high carbon emissions. Meanwhile
solar-driven photothermal catalytic technology offers a novel pathway for methane conversion through the synergistic mechanisms of photon excitation and thermal activation. The progress on three typical photothermal catalytic methane conversion technologies: Steam methane reforming
methane dry reforming and methane cracking was systematically reviewed. The breakthroughs in energy transfer optimization
catalyst design and system integration were mainly discussed. The photothermal coupling effect significantly reduced the methane activation barrier through the reconstruction of localized photothermal fields and electronic state regulation. The interface charge separation and oxygen vacancy engineering of nano-structured catalysts improved their anti-coking performances and reaction selectivities. Reactor designs combined with energy storage technologies optimized the dynamic utilization efficiency of solar energy. Although significant progress has been made on photothermal catalytic mechanism and energy-mass transfer
it is necessary to improve the stability of broadband light-absorbing materials and heat and mass transfer efficiency of large-scale reactors
and optimize multi-field coupling of light-heat-matter. In the future
it is necessary to focus on the development of multi-energy synergistic systems and intelligent control strategies to promote the advancement of photothermal catalytic methane conversion technologies towards low-carbon and high-value industrial application systems.
SAUNOIS M , BOUSQUET P , POULTER B , et al . The global methane budget: 2000—2012 [J ] . Earth System Science Data , 2016 , 8 ( 2 ): 697 - 751 .
王建良 . 关注油气甲烷排放,助力中国甲烷减排 [J ] . 煤炭经济研究 , 2022 , 42 ( 8 ): 1 .
WANG J L . Focus on oil and gas methane emissions to help reduce methane emissions in China [J ] . Coal Economic Research , 2022 , 42 ( 8 ): 1 .
IEA . Global methane tracker 2024 [R ] . Paris : IEA , 2024 .
周莹 , 饶家豪 , 唐春 , 等 . 光伏电催化硫化氢分解制氢脱硫经济性分析 [J ] . 天然气工业 , 2024 , 44 ( 11 ): 178 - 191 .
ZHOU Y , RAO J H , TANG C , et al . An economic analysis on photovoltaic electrocatalytic hydrogen sulfide decomposition for hydrogen production and desulfurization [J ] . Natural Gas Industry , 2024 , 44 ( 11 ): 178 - 191 .
周莹 , 叶嘉乐 , 于姗 , 等 . “双碳”目标下天然气分布式能源发展现状及机遇 [J ] . 天然气工业 , 2024 , 44 ( 2 ): 23 - 29 .
ZHOU Y , YE J L , YU S , et al . Development status and opportunities of natural gas distributed energy resource under the goal of “dual carbon” [J ] . Natural Gas Industry , 2024 , 44 ( 2 ): 23 - 29 .
WANG S Q , NABAVI S A , CLOUGH P T . A review on bi/polymetallic catalysts for steam methane reforming [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 12 ): 15879 - 15893 .
DAS A , PEU S D . A Comprehensive review on recent advancements in thermochemical processes for clean hydrogen production to decarbonize the energy sector [J ] . Sustainability , 2022 , 14 ( 18 ): 11206 .
LUO L , FU L , LIU H F , et al . Synergy of Pd atoms and oxygen vacancies on In 2 O 3 for methane conversion under visible light [J ] . Nature Communications , 2022 , 13 ( 1 ): 2930 .
MATEO D , CERRILLO J L , DURINI S , et al . Fundamentals and applications of photo-thermal catalysis [J ] . Chemical Society Reviews , 2021 , 50 ( 3 ): 2173 - 2210 .
秦宏宇 , 柯义虎 , 李景云 , 等 . 光热协同效应在催化反应中的应用研究进展 [J ] . 分子催化 , 2021 , 35 ( 4 ): 375 - 389 .
QIN H Y , KE Y H , LI J Y , et al . Application of photo-thermal synergistic effect in catalytic reactions [J ] . Journal of Molecular Catalysis , 2021 , 35 ( 4 ): 375 - 389 .
KOEPF E , ZOLLER S , LUQUE S , et al . Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project [J ] . AIP Conference Proceedings , 2019 , 2126 ( 1 ): 180012 .
DARKO D A , SAHU S , RATHORE J , et al . Photo-thermal catalysis for sustainable energy production and environmental treatment [J ] . Frontiers in Energy Research , 2024 , 12 : 1251188 .
钟旺燊 , 陈野力 , 钱沐杨 , 等 . 大气压非平衡等离子体甲烷干法重整零维数值模拟 [J ] . 物理学报 , 2021 , 70 ( 7 ): 252 - 264 .
ZHONG W S , CHEN Y L , QIAN M Y , et al . Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma [J ] . Acta Physica Sinica , 2021 , 70 ( 7 ): 252 - 264 .
LI H Y , PEI W , YANG X W , et al . Pt overlayer for direct oxidation of CH 4 to CH 3 OH [J ] . Chinese Chemical Letters , 2023 , 34 ( 11 ): 108292 .
孙晨 , 赵昆峰 , 易志国 . 甲烷完全催化氧化研究进展 [J ] . 无机材料学报 , 2023 , 38 ( 11 ): 1245 - 1256 .
SUN C , ZHAO K F , YI Z G . Research progress in catalytic total oxidation of methane [J ] . Journal of Inorganic Materials , 2023 , 38 ( 11 ): 1245 - 1256 .
JI G R , JI L , WU S W , et al . In-situ exsolved ultrafine Ni nanoparticles from CeZrNiO 2 solid solution for efficient photothermal catalytic CO 2 reduction by CH 4 [J ] . Advanced Powder Materials , 2024 , 3 ( 3 ): 100188 .
李平 , 李海金 , 涂文广 , 等 . Z 型光催化材料的研究进展 [J ] . 物理学报 , 2015 , 64 ( 9 ): 10 - 19 .
LI P , LI H J , TU W G , et al . Photocatalytic application of Z -type system [J ] . Acta Physica Sinica , 2015 , 64 ( 9 ): 10 - 19 .
马永杰 , 刘永胜 , 关康 , 等 . CH 4 + C 2 H 5 OH + Ar体系热解的气相动力学研究 [J ] . 无机材料学报 , 2024 , 39 ( 11 ): 1235 - 1247 .
MA Y J , LIU Y S , GUAN K , et al . Gas-phase kinetic study of pyrolysis in the system of CH 4 + C 2 H 5 OH + Ar [J ] . Journal of Inorganic Materials , 2024 , 39 ( 11 ): 1235 - 1247 .
SONG H , MENG X G , WANG Z J , et al . Visible-light-mediated methane activation for steam methane reforming under mild conditions: A case study of Rh/TiO 2 catalysts [J ] . ACS Catalysis , 2018 , 8 ( 8 ): 7556 - 7565 .
DOU P Y , YANG W W , TANG X Y , et al . Topology optimization of catalyst bed structure for a solar steam methane reforming reactor aiming at improved conversion efficiency and hydrogen yield [J ] . Chemical Engineering Science , 2023 , 281 : 119200 .
SARWANA W , TAKAMI D , YAMAMOTO A , et al . Photothermal steam reforming of methane over silica-supported nickel catalysts with temperature gradients [J ] . Catalysis Science & Technology , 2023 , 13 ( 6 ): 1755 - 1762 .
DONG H , FANG J , YAN X Y , et al . Experimental investigation of solar hydrogen production via photo-thermal driven steam methane reforming [J ] . Applied Energy , 2024 , 368 : 123532 .
YUAN Y G , ZHOU J Y , BAYLES A , et al . Steam methane reforming using a regenerable antenna-reactor plasmonic photocatalyst [J ] . Nature Catalysis , 2024 , 7 ( 12 ): 1339 - 1349 .
GIACONIA A , IAQUANIELLO G , CAPUTO G , et al . Experimental validation of a pilot membrane reactor for hydrogen production by solar steam reforming of methane at maximum 550 ℃ using molten salts as heat transfer fluid [J ] . International Journal of Hydrogen Energy , 2020 , 45 ( 58 ): 33088 - 33101 .
YANG Y J , LIU Z , ZHANG R Z , et al . Design optimization of a molten salt heated methane/steam reforming membrane reactor by universal design analysis and techno-economic assessment [J ] . International Journal of Hydrogen Energy , 2024 , 69 : 1236 - 1245 .
PASHCHENKO D . Integrated solar combined cycle system with steam methane reforming: Thermodynamic analysis [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 48 ): 18166 - 18176 .
MA J , JIANG B , SIMA W , et al . Deciphering high-efficiency solar-thermochemical energy conversion process of heat pipe reactor for steam methane reforming [J ] . Fuel , 2022 , 326 : 124972 .
ALAIDAROS A , ALZAHRANI A A . Integrated solar system for hydrogen production using steam reforming of methane [J ] . International Journal of Hydrogen Energy , 2024 , 140 : 1033 - 1048
WANG Q S , DUAN L Q , LU Z Y , et al . Thermodynamic performance comparison of SOFC-MGT-CCHP systems coupled with two different solar methane steam reforming processes [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 71 ): 27473 - 27491 .
ZHANG X L , GONG W M , DAI B , et al . Effect of La 2 O 3 / γ Al 2 O 3 Catalyst on the activation of CH 4 and CO 2 to C 2 hydrocarbons under non-equilibrium plasma [J ] . Chinese Chemical Letters , 2002 , 13 ( 2 ): 175 - 176 .
彭亚晶 , 孙爽 , 宋云飞 , 等 . 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱 [J ] . 物理学报 , 2018 , 67 ( 2 ): 152 - 158 .
PENG Y J , SUN S , SONG Y F , et al . Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules [J ] . Acta Physica Sinica , 2018 , 67 ( 2 ): 152 - 158 .
崔宗杨 , 谢忠帅 , 汪尧进 , 等 . 钙钛矿铁电半导体的光催化研究现状及其展望 [J ] . 物理学报 , 2020 , 69 ( 12 ): 51 - 83 .
CUI Z Y , XIE Z S , WANG Y J , et al . Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors [J ] . Acta Physica Sinica , 2020 , 69 ( 12 ): 51 - 83 .
贾鑫 , 李晋宇 , 丁世豪 , 等 . Pd纳米颗粒协同氧空位增强TiO 2 光催化CO 2 还原性能 [J ] . 无机材料学报 , 2023 , 38 ( 11 ): 1301 - 1308 .
JIA X , LI J Y , DING S H , et al . Synergy effect of Pd nanoparticles and oxygen vacancies for enhancing TiO 2 photocatalytic CO 2 reduction [J ] . Journal of Inorganic Materials , 2023 , 38 ( 11 ): 1301 - 1308 .
NI J R , ZHAO R F , SHI C D , et al . Structure-tailored superlattice Bi 7 Ti 4 NbO 21 : Coupling octahedral tilting and rotation induced high ferroelectric polarization for efficient piezo-photocatalytic CO 2 reduction [J ] . Advanced Powder Materials , 2025 , 4 ( 2 ): 100265 .
LI Q , WANG H L , ZHANG M , et al . Suppressive strong metal-support interactions on ruthenium/TiO 2 promote light-driven photothermal CO 2 reduction with methane [J ] . Angewandte Chemie International Edition , 2023 , 62 ( 19 ): e202300129 .
LI Q , GAO Y X , CHEN J , et al . An in situ defect engineering approach for light-driven methane dry reforming over atomically distributed nickel [J ] . Cell Reports Physical Science , 2022 , 3 ( 11 ): 101127 .
LI Z Y , MAO Y , HUANG Y F , et al . Theoretical and experimental studies of highly efficient all-solid Z-scheme TiO 2 -TiC/g-C 3 N 4 for photocatalytic CO 2 reduction via dry reforming of methane [J ] . Catalysis Science & Technology , 2022 , 12 ( 9 ): 2804 - 2818 .
LI T F , CHENG J H , LI D , et al . Hollow spherical Ni/ZrO 2 as a superior catalyst for syngas production from photothermal synergistic dry reforming of methane [J ] . Catalysis Science & Technology , 2024 , 14 ( 2 ): 405 - 418 .
FU G , JIANG M H , LIU J , et al . Rh/Al nanoantenna photothermal catalyst for wide-spectrum solar-driven CO 2 methanation with nearly 100% selectivity [J ] . Nano Letters , 2021 , 21 ( 20 ): 8824 - 8830 .
HU B , WANG B H , ZHOU W , et al . Synergistic effect of Ru single atom and nanoparticle on photothermal methane dry reforming reaction [J ] . Chemical Engineering Science , 2024 , 297 : 120308 .
RAO Z Q , WANG K W , CAO Y H , et al . Light-reinforced key intermediate for anticoking to boost highly durable methane dry reforming over single atom Ni active sites on CeO [J ] . Journal of the American Chemical Society , 2023 , 145 ( 45 ): 24625 - 24635 .
XIONG H L , DONG Y Y , HU C Y , et al . Highly efficient and selective light-driven dry reforming of methane by a carbon exchange mechanism [J ] . Journal of the American Chemical Society , 2024 , 146 ( 13 ): 9465 - 9475 .
LI Z D , LU J F , DING J , et al . Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate [J ] . Journal of Colloid and Interface Science , 2024 , 676 : 1001 - 1010 .
ZHANG W C , LI Q , QIU Y . Design and optimization of a solar-driven methane dry reforming reactor by developing an optical-thermal-chemical model [J ] . Chemical Engineering Journal , 2024 , 483 : 149094 .
EL-NAGGAR H A , YOSHIDA H , YAMAMOTO A . A gap-designed photo-reactor for high-performance photothermal methane reforming [J ] . Sustainable Energy & Fuels , 2025 , 9 ( 6 ): 1596 - 1604 .
SHI X H , WANG F Q , LOUGOU B G , et al . Experimental and numerical study regarding the biomimetic bone porous structure to match energy and mass flow in a solar thermochemical reactor [J ] . Journal of Energy Storage , 2022 , 55 : 105645 .
XU B Y , YAO J L , PAN Y Q , et al . Optimizing solar-driven methane dry reforming efficiency via enhanced radiation penetration and absorption [J ] . Applied Thermal Engineering , 2025 , 263 : 125333 .
DAI Z Q , YANG Y J , YANG W W , et al . A thermochemical reactor design with better thermal management and improved performance for methane/carbon dioxide dry reforming [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 82 ): 34794 - 34809 .
MAHARAJ L , LOKHAT D . Dry reforming of methane in a direct irradiated solar powered system: Process design and optimisation [J ] . Applied Energy , 2025 , 377 : 124536 .
YAO J L , ZHENG H Y , BAI P W , et al . Design and optimization of solar-dish volumetric reactor for methane dry reforming process with three-dimensional optics-CFD method [J ] . Energy Conversion and Management , 2023 , 277 : 116663 .
YAO J L , ZHANG Z Y , XU B Y , et al . Spectral properties regulation for the performance improvement of solar-driven methane dry reforming reactor based on the photothermal synergistic catalysis [J ] . Fuel , 2025 , 380 : 133228 .
YAO J L , ZHANG Z Y , XU B Y , et al . Establishment of light-dependent photo-thermal kinetic model for methane dry reforming and performance optimization in a cavity reactor [J ] . AIChE Journal , 2024 , 70 ( 7 ): e18433 .
陈术清 , 吕功煊 . 加热和光照条件下Ru/TiO 2 催化二氧化碳甲烷化研究 [J ] . 无机材料学报 , 2014 , 29 ( 12 ): 1287 - 1293 .
CHEN S Q , LV G X . CO 2 methanation over Ru/TiO 2 catalysts under UV irradiation and heating [J ] . Journal of Inorganic Materials , 2014 , 29 ( 12 ): 1287 - 1293 .
LI Y F , WEI Y C , HE W J , et al . Ordered macroporous structured TiO 2 -based photocatalysts for CO 2 reduction: A review [J ] . Chinese Chemical Letters , 2023 , 34 ( 12 ): 108417 .
董梦悦 , 徐卫卫 , 赵静 , 等 . 制备方法对Ru/ γ -Al 2 O 3 与等离子体共活化CO 2 甲烷化反应的影响 [J ] . 无机材料学报 , 2020 , 35 ( 5 ): 567 - 572 .
DONG M Y , XU W W , ZHAO J , et al . Ru/ γ -Al 2 O 3 and plasma co-activation for CO 2 methanation: Effect of catalytic material preparation method [J ] . Journal of Inorganic Materials , 2020 , 35 ( 5 ): 567 - 572 .
ZHOU J , LIU H , WANG H Q . Photothermal catalysis for CO 2 conversion [J ] . Chinese Chemical Letters , 2023 , 34 ( 2 ): 83 - 96 .
BIAN H , GANI T Z H , LIU J , et al . Ni nanoparticles supported on Al 2 O 3 + La 2 O 3 yolk-shell catalyst for photo-assisted thermal decomposition of methane [J ] . Journal of Colloid and Interface Science , 2023 , 643 : 151 - 161 .
MSHEIK M , RODAT S , ABANADES S . Solar methane pyrolysis in a liquid metal bubble column reactor: Effect of medium type and gas injection configuration [J ] . Journal of Analytical and Applied Pyrolysis , 2024 , 183 : 106756 .
MSHEIK M , RODAT S , ABANADES S . Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors [J ] . Energy , 2022 , 260 : 124943 .
ABUSEADA M , WEI C Y , SPEARRIN R M , et al . Solar-thermal production of graphitic carbon and hydrogen via methane decomposition [J ] . Energy & Fuels , 2022 , 36 ( 7 ): 3920 - 3928 .
DAI H D , BESSER R S . Fluidization analysis for catalytic decomposition of methane over carbon blacks for solar hydrogen production [J ] . International Journal of Hydrogen Energy , 2021 , 46 ( 79 ): 39079 - 39094 .
KIM H , KIM J . Numerical Study on optics and heat transfer of solar reactor for methane thermal decomposition [J ] . Energies , 2021 , 14 ( 20 ): 6451 .
ABUSEADA M , SPEARRIN R M , FISHER T S . Influence of process parameters on direct solar-thermal hydrogen and graphite production via methane pyrolysis [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 78 ): 30323 - 30338 .
ABUSEADA M , FISHER T S . Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing [J ] . Applied Energy , 2023 , 352 : 121872 .
WEI C Y , ABUSEADA M , JEEVARETANAM B , et al . Concentrated solar-thermal methane pyrolysis in a porous substrate: Yield analysis via infrared laser absorption [J ] . Proceedings of the Combustion Institute , 2023 , 39 ( 4 ): 5581 - 5589 .
OPHOFF C , OZALP N , MOENS D . A numerical study on particle tracking and heat transfer enhancement in a solar cavity receiver [J ] . Applied Thermal Engineering , 2020 , 180 : 115785 .
RAZMI A R , HANIFI A R , SHAHBAKHTI M . Techno-economic analysis of a novel concept for the combination of methane pyrolysis in molten salt with heliostat solar field [J ] . Energy , 2024 , 301 : 131644 .
RAZMI A R , HANIFI A R , SHAHBAKHTI M . A comparative techno-economic assessment between solar-based hydrogen production by methane pyrolysis and water electrolysis methods [J ] . Renewable Energy , 2025 , 242 : 122504 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构