
浏览全部资源
扫码关注微信
广东石油化工学院 化学工程学院,广东 茂名 525000
何水森(1994—),博士,讲师,研究方向为能源化工、环境催化,E-mail:cupheshuisen@163.com。
曾兴业(1982—),博士,正高级实验师,研究方向为环境催化、油品清洁化利用,E-mail:zengxingye@gdupt.edu.cn。
收稿:2025-03-11,
修回:2025-04-10,
纸质出版:2026-01-25
移动端阅览
何水森,王丽,王寒露等.CO2加氢制芳烃反应路径与催化剂研究进展[J].低碳化学与化工,2026,51(1):1-15.
HE Shuisen,WANG Li,WANG Hanlu,et al.Research progress on reaction pathways and catalysts for CO2 hydrogenation to aromatics[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):1-15.
何水森,王丽,王寒露等.CO2加氢制芳烃反应路径与催化剂研究进展[J].低碳化学与化工,2026,51(1):1-15. DOI: 10.12434/j.issn.2097-2547.20250096.
HE Shuisen,WANG Li,WANG Hanlu,et al.Research progress on reaction pathways and catalysts for CO2 hydrogenation to aromatics[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):1-15. DOI: 10.12434/j.issn.2097-2547.20250096.
在全球气候变暖与化石能源枯竭的双重挑战下,CO
2
加氢制芳烃为碳资源循环利用提供了绿色途径。CO
2
加氢制芳烃主要聚焦于CO
2
改性费托合成(CO
2
-FTS)和甲醇介导两种路径。概述了CO
2
-FTS和甲醇介导的反应机理和关键中间产物,总结了催化剂结构设计与优化方面的最新进展。重点介绍了双功能催化剂的助剂类型、载体结构、沸石分子筛的酸性与结构调控以及双功能催化剂中活性组分距离对催化性能的影响,指出CO
2
加氢与芳构化反应的协同作用以及加氢中间产物的形成是影响催化剂性能的关键因素。最后对CO
2
加氢制芳烃催化剂的应用前景进行了展望,以期为推动绿色化工技术的发展提供参考。
Under the dual challenges of global warming and fossil energy depletion
CO
2
hydrogenation to aromatics provides a green pathway for carbon resource recycling. CO
2
hydrogenation to aromatics mainly focuses on two reaction pathways: CO
2
-modified Fischer-Tropsch synthesis (CO
2
-FTS) and methanol-mediated pathway. The reaction mechanisms and key intermediates of CO
2
-FTS and methanol-mediated pathways for the production of aromatics were reviewed
and the recent progress on catalyst structure design and optimization was summarized. The effects of additive type
support structure
acidity and structure modulation of zeolite molecular sieves
and the distance of active components in the bifunctional catalysts on the catalytic performance of CO
2
hydrogenation to aromatics were highlighted. The synergistic effect of CO
2
hydrogenation and arylation reaction as well as the formation of hydrogenation intermediates are the key factors influencing the performance of the catalysts. Finally
the application prospects of the catalysts for CO
2
hydrogenation to aromatics were discussed
providing a reference for promoting the development in green chemical technology.
LI Z L , WU W L , WANG M L , et al . Ambient-pressure hydrogenation of CO 2 into long-chain olefins [J ] . Nature Communications , 2022 , 13 ( 1 ): 2396 .
LI J , HE Y L , TAN L , et al . Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology [J ] . Nature Catalysis , 2018 , 1 ( 10 ): 787 - 793 .
JIANG X , NIE X W , GUO X , et al . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J ] . Chemical Reviews , 2020 , 120 ( 15 ): 7984 - 8034 .
DONG X S , LI F , ZHAO N , et al . CO 2 hydrogenation to methanol over Cu/ZnO/ZrO 2 catalysts prepared by precipitation-reduction method [J ] . Applied Catalysis B: Environmental , 2016 , 191 : 8 - 17 .
WANG Y , GAO W Z , KAZUMI S , et al . Direct and oriented conversion of CO 2 into value-added aromatics [J ] . Chemistry—A European Journal , 2019 , 25 ( 20 ): 5149 - 5153 .
刘宇 . Pt/ZSM-22和Pt/ZSM-35催化长链正构生物烷烃制航空煤油 [D ] . 大连 : 大连理工大学 , 2020 .
LIU Y . Production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins over Pt/ZSM-22 and Pt/ZSM-35 catalysts [D ] . Dalian : Dalian University of Technology , 2020 .
马立莉 , 朱丽娜 , 王玉如 , 等 . CO/CO 2 一步法制备航空煤油的研究进展 [J ] . 化学通报 , 2023 , 86 ( 5 ): 582 - 588 .
MA L L , ZHU L N , WANG Y R , et al . Research progress in one-step synthesis of aviation kerosene from CO/CO 2 [J ] . Chemistry , 2023 , 86 ( 5 ): 582 - 588 .
NZIL A . Current status of the degradation of aliphatic and aromatic petroleum hydrocarbons by thermophilic microbes and future perspectives [J ] . International Journal of Environmental Research and Public Health , 2018 , 15 ( 12 ): 2782 .
LIU Z Y , MU L , FENG C Y , et al . Generation and emission mechanism of polycyclic aromatic hydrocarbon (PAHs) during the coking process in Shanxi, China [J ] . Science of the Total Environment , 2024 , 948 : 174619 .
PARK H , OH S , LEE S , et al . Cobalt- and nitrogen-codoped porous carbon catalyst made from core-shell type hybrid metal-organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity [J ] . Applied Catalysis B: Environmental , 2019 , 246 : 322 - 329 .
TORRENTE-MURCIANO L , CHAPMAN R S L , NARVAEZ-DINAMARCA A , et al . Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO 2 into hydrocarbons [J ] . Physical Chemistry Chemical Physics , 2016 , 18 ( 23 ): 15496 - 15500 .
ALBRECHT M , RODEMERCK U , SCHNEIDER M , et al . Unexpectedly efficient CO 2 hydrogenation to higher hydrocarbons over non-doped Fe 2 O 3 [J ] . Applied Catalysis B: Environmental , 2017 , 204 : 119 - 126 .
LIU J H , ZHANG A F , LIU M , et al . Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons [J ] . Journal of CO 2 Utilization , 2017 , 21 : 100 - 107 .
GAO P , XU J , QI G D , et al . A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: Understanding the dehydrogenation process [J ] . ACS Catalysis , 2018 , 8 ( 10 ): 9809 - 9820 .
GUO S J , FAN S , WANG H , et al . Selective conversion of CO 2 to trimethylbenzene and ethene by hydrogenation over a bifunctional ZnCrO x /H-ZSM-5 composite catalyst [J ] . ACS Catalysis , 2023 , 14 ( 1 ): 271 - 282 .
SONG G Y , LI M Z , XU L , et al . Tuning the integration proximity between Na promoter and FeMnO x coupled with rationally modified HZSM-5 to promote selective CO 2 hydrogenation to aromatics [J ] . Industrial & Engineering Chemistry Research , 2022 , 61 ( 20 ): 6820 - 6830 .
SONG G Y , LI M Z , YAN P K , et al . High conversion to aromatics via CO 2 -FT over a CO-reduced Cu-Fe 2 O 3 catalyst integrated with HZSM-5 [J ] . ACS Catalysis , 2020 , 10 ( 19 ): 11268 - 11279 .
LIU X Y , PAN Y L , ZHANG P , et al . Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst [J ] . Frontiers of Chemical Science and Engineering , 2022 , 16 ( 3 ): 384 - 396 .
HOU H , ZHU X L , CHEN G Y , et al . Highly selective CO 2 conversion to valuable aromatics over ZnCr 2 O 4 /HZSM-11 [J ] . International Journal of Hydrogen Energy , 2024 , 92 : 779 - 790 .
ZHU J , WANG P , ZHANG X B , et al . Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO 2 hydrogenation [J ] . Science Advances , 2022 , 8 ( 5 ) : eabm3629 .
XU Y F , LIU J G , WANG J , et al . Selective conversion of syngas to aromatics over Fe 3 O 4 @MnO 2 and hollow HZSM-5 bifunctional catalysts [J ] . ACS Catalysis , 2019 , 9 ( 6 ): 5147 - 5156 .
焦佳鹏 , 田海锋 , 何环环 , 等 . CO/CO 2 加氢制芳烃的研究进展 [J ] . 化工进展 , 2021 , 40 ( 1 ): 205 - 220 .
JIAO J P , TIAN H F , HE H H , et al . Recent advanced of CO/CO 2 hydrogenation to aromatics [J ] . Chemical Industry and Engineering Progress , 2021 , 40 ( 1 ): 205 - 220 .
ZHOU W , CHENG K , KANG J C , et al . New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO 2 into hydrocarbon chemicals and fuels [J ] . Chemical Society Reviews , 2019 , 48 ( 12 ): 3193 - 3228 .
XU Y B , SHI C M , LIU B , et al . Selective production of aromatics from CO 2 [J ] . Catalysis Science & Technology , 2019 , 9 ( 3 ): 593 - 610 .
WANG Y , KAZUMI S , GAO W Z , et al . Direct conversion of CO 2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway [J ] . Applied Catalysis B: Environmental , 2020 , 269 : 118792 .
RAMIREZ A , DUTTA CHOWDHURY A , DOKANIA A , et al . Effect of zeolite topology and reactor configuration on the direct conversion of CO 2 to light olefins and aromatics [J ] . ACS Catalysis , 2019 , 9 ( 7 ): 6320 - 6334 .
CUI X , GAO P , LI S G , et al . Selective production of aromatics directly from carbon dioxide hydrogenation [J ] . ACS Catalysis , 2019 , 9 ( 5 ): 3866 - 3876 .
LIANG J M , GUO L S , GAO W Z , et al . Direct conversion of CO 2 to aromatics over K-Zn-Fe/ZSM-5 catalysts via a Fischer-Tropsch synthesis pathway [J ] . Industrial & Engineering Chemistry Research , 2022 , 61 ( 29 ): 10336 - 10346 .
MURCIANO R , SERRA J M , MARTíNEZ A . Direct hydrogenation of CO 2 to aromatics via Fischer-Tropsch route over tandem K-Fe/Al 2 O 3 + H-ZSM-5 catalysts: Influence of zeolite properties [J ] . Catalysis Today , 2024 , 427 : 114404 .
JIANG Q S , SONG G Y , ZHAI Y Z , et al . Selective hydrogenation of CO 2 to aromatics over composite catalyst comprising NaZnFe and polyethylene glycol-modified HZSM-5 with intra-and intercrystalline mesoporous structure [J ] . Industrial & Engineering Chemistry Research , 2023 , 62 ( 23 ): 9188 - 9200 .
CHEN C H , LI X , WANG Z H , et al . Insight into the element migration induced tandem cooperation between CuNa-doped Fe based catalyst and Mn-treated HZSM-5 for direct CO 2 hydrogenation to aromatics [J ] . Chemical Engineering Journal , 2024 , 483 .
SONG G , ZHAI Y Z , JIANG Q S , et al . Unraveling the Mn-promoted coke elimination mechanism by CO 2 over NaFeMn/ZSM-5 catalyst during CO 2 hydrogenation [J ] . Fuel , 2023 , 338 : 127185 .
SONG G Y , JIANG Q S , ZHAI Y Z , et al . Rationally designing NaFeMn/core-shell HZSM-5@Si bifunctional catalyst for selective synthesis of para -xylene from CO 2 hydrogenation [J ] . Chemical Engineering Science , 2023 , 280 : 119037 .
DAI C Y , ZHAO X , HU B R , et al . Hydrogenation of CO 2 to aromatics over Fe-K/Alkaline Al 2 O 3 and P/ZSM-5 tandem catalysts [J ] . Industrial & Engineering Chemistry Research , 2020 , 59 ( 43 ): 19194 - 19202 .
HAN X Q , ZUO J C , WEN D L , et al . Toluene methylation with syngas to para -xylene by bifunctional ZnZrO x -HZSM-5 catalysts [J ] . Chinese Journal of Catalysis , 2022 , 43 ( 4 ): 1156 - 1164 .
WANG Z H , LI M Z , NAWAZ M A , et al . Petaloid ZnAlO x /HZSM-5 catalyst with metal modification for highly selective conversion of syngas to value-added aromatics [J ] . Fuel , 2024 , 357 : 129880 .
WEI J , YAO R W , GE Q J , et al . Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO 2 hydrogenation [J ] . Applied Catalysis B: Environmental , 2021 , 283 : 119648 .
ZHANG C D , HU K H , CHEN X X , et al . Direct hydrogenation of CO 2 into valuable aromatics over K/Fe-Cu-Al@HZSM-5 tandem catalysts: Effects of zeolite surface acidity on aromatics formation [J ] . Fuel Processing Technology , 2023 , 248 : 107824 .
YANG X P , SONG G Y , LI M Z , et al . Selective production of aromatics directly from carbon dioxide hydrogenation over n Na-Cu-Fe 2 O 3 /HZSM-5 [J ] . Industrial & Engineering Chemistry Research , 2022 , 61 ( 23 ): 7787 - 7798 .
CHENG Y , CHEN Y , ZHANG S X , et al . High-yield production of aromatics over CuFeO 2 /hierarchical HZSM-5 via CO 2 Fischer-Tropsch synthesis [J ] . Green Chemistry , 2023 , 25 ( 9 ): 3570 - 3584 .
WEI J , GE Q J , YAO R W , et al . Directly converting CO 2 into a gasoline fuel [J ] . Nature Communications , 2017 , 8 : 15174 .
WANG S W , WU T J , LIN J , et al . FeK on 3D graphene-zeolite tandem catalyst with high efficiency and versatility in direct CO 2 conversion to aromatics [J ] . ACS Sustainable Chemistry & Engineering , 2019 , 7 ( 21 ): 17825 - 17833 .
HE Y M , MUELLER F H , PALKOVITS R , et al . Tandem catalysis for CO 2 conversion to higher alcohols: A review [J ] . Applied Catalysis B: Environment and Energy , 2024 , 345 : 123663 .
WANG T , YANG C G , GAO P , et al . ZnZrO x integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO 2 hydrogenation [J ] . Applied Catalysis B: Environmental , 2021 , 286 : 119929 .
GUO R X , LIU J , WANG H , et al . Enhanced production of aromatics from syngas over CoMnAl oxides combined with b -axis thickness tailored HZSM-5 [J ] . Materials Chemistry Frontiers , 2024 , 8 ( 8 ): 2011 - 2020 .
ALI M , ZAFAR F , SHEN D M , et al . Contributions of ZSM-5 morphology over hybridized ZnO-ZrO 2 /ZSM-5 for direct CO 2 hydrogenation activity to aromatics [J ] . Fuel , 2024 , 378 : 132925 .
HU H W , WANG J J , LI C . Highly selective synthesis of tetramethylbenzene from CO 2 hydrogenation over ZnZrO/modified-ZSM-11 tandem catalyst [J ] . Journal of Catalysis , 2025 , 443 : 115966 .
SHANG X , LIU G D , SU X , et al . Preferential synthesis of toluene and xylene from CO 2 hydrogenation in the presence of benzene through an enhanced coupling reaction [J ] . ACS Catalysis , 2022 , 12 ( 21 ): 13741 - 13754 .
GU Y Q , LIANG J , WANG Y , et al . Tailoring the product distribution of CO 2 hydrogenation via engineering of Al location in zeolite [J ] . Applied Catalysis B: Environment and Energy , 2024 , 349 : 123842 .
TIAN H F , JIAO C X , ZHA F , et al . Tandem catalysts of different crystalline In 2 O 3 /sheet HZSM-5 zeolite for CO 2 hydrogenation to aromatics [J ] . Journal of Colloid and Interface Science , 2024 , 653 : 1225 - 1235 .
ARSLAN M T , TIAN G , ALI B , et al . Highly selective conversion of CO 2 or CO into precursors for kerosene-based aviation fuel via an aldol-aromatic mechanism [J ] . ACS Catalysis , 2022 , 12 ( 3 ): 2023 - 2033 .
ZHOU C , SHI J Q , ZHOU W , et al . Highly active ZnO-ZrO 2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide [J ] . ACS Catalysis , 2019 , 10 ( 1 ): 302 - 310 .
TIAN H F , GAO P , YANG X , et al . Tandem composite of M(Zn, Ga, In)-UIO-66/(HZSM-5)-palygorskite for hydrogenation of carbon dioxide to aromatics [J ] . Chemical Engineering Journal , 2023 , 466 : 143267 .
LI Z L , QU Y Z , WANG J J , et al . Highly selective conversion of carbon dioxide to aromatics over tandem catalysts [J ] . Joule , 2019 , 3 ( 2 ): 570 - 583 .
WANG Y , TAN L , TAN M H , et al . Rationally designing bifunctional catalysts as an efficient strategy to boost CO 2 hydrogenation producing value-added aromatics [J ] . ACS Catalysis , 2018 , 9 ( 2 ): 895 - 901 .
ZHANG J F , ZHANG M , CHEN S Y , et al . Hydrogenation of CO 2 into aromatics over a ZnCrO x -zeolite composite catalyst [J ] . Chemical Communications , 2019 , 55 ( 7 ): 973 - 976 .
TIAN H , JIAO J P , ZHA F , et al . Hydrogenation of CO 2 into aromatics over ZnZrO-Zn/HZSM-5 composite catalysts derived from ZIF-8 [J ] . Catalysis Science & Technology , 2022 , 12 ( 3 ): 799 - 811 .
NI Y M , CHEN Z Y , FU Y , et al . Selective conversion of CO 2 and H 2 into aromatics [J ] . Nature Communications , 2018 , 9 ( 1 ): 3457 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533