
浏览全部资源
扫码关注微信
太原理工大学 化学与化工学院,山西 太原 030024
李傲(1998—),硕士研究生,研究方向为CO2加氢转化制烯烃,E-mail:15238579524@163.com。
吴华帅(1988—),博士,讲师,研究方向为CO/CO2加氢高效转化利用,E-mail:wuhuashuai@tyut.edu.cn。
收稿:2025-03-09,
修回:2025-04-09,
纸质出版:2026-01-25
移动端阅览
李傲,吴华帅,张效胜等.燃煤烟道气中CO2耦合绿氢制烯烃工艺可行性和技术经济性分析[J].低碳化学与化工,2026,51(1):132-140.
LI Ao,WU Huashuai,ZHANG Xiaosheng,et al.Process feasibility and techno-economic analysis of CO2 from coal-fired flue gas coupled green hydrogen to olefins[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):132-140.
李傲,吴华帅,张效胜等.燃煤烟道气中CO2耦合绿氢制烯烃工艺可行性和技术经济性分析[J].低碳化学与化工,2026,51(1):132-140. DOI: 10.12434/j.issn.2097-2547.20250093.
LI Ao,WU Huashuai,ZHANG Xiaosheng,et al.Process feasibility and techno-economic analysis of CO2 from coal-fired flue gas coupled green hydrogen to olefins[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):132-140. DOI: 10.12434/j.issn.2097-2547.20250093.
随着能源结构转型和“双碳”战略推进,CO
2
加氢制烯烃工艺成为碳减排和碳利用的重要途径之一。尽管CO
2
加氢制烯烃催化剂的实验研究已较为成熟,但其在工业应用方面仍处于起步阶段。借助模拟手段进行工艺分析是实现其工业化的有效途径之一。基于CO
2
加氢制烯烃催化剂,按照70 × 10
4
t/a烯烃产能建立了燃煤烟道气中CO
2
耦合绿氢制烯烃工艺(简称“耦合工艺”),该工艺涵盖多个单元,包括碳捕集、逆水煤气变换反应和费托合成制烯烃反应,以及后续轻烃与重烃的分离过程。模拟结果表明,耦合工艺具有显著的碳减排优势,其
碳效率为99.71%,净CO
2
排放量为-1.83 t/t(生产1 t烯烃的CO
2
排放量为-1.83 t)。提高CO
2
转化率可有效降低资本投资和提高能量效率,H
2
生产成本对耦合工艺的经济可行性有重要影响。当CO
2
转化率从47%提高至79%时,耦合工艺的能量效率为40.92%,同时总资本投资可降低38.79%。当H
2
生产成本从0.367 USD/m
3
(标况)降低至0.114 USD/m
3
,耦合工艺的生产成本(指“烯烃生产成本”)可降低51.58%,最低可降至1006.1 USD/t。在相近的H
2
生产成本(0.317 USD/m
3
)下,该工艺的生产成本为2100.8 USD/t,优于文献值(3580 USD/t)。
With the transition of the national energy structure and the advancement of “carbon peaking and carbon neutrality” strategy
CO
2
hydrogenation to olefins process has become one of the key methods for carbon emission reduction and carbon utilization. Although experimental studies on catalysts for CO
2
hydrogenation to olefins are relatively mature
their industrial application remains at a preliminary stage. Analyzing the process through simulation is one of the effective approaches to promoting their industrialization. Based on the catalysts for CO
2
hydrogenation to olefins
a coupled process for converting CO
2
from coal-fired flue gas and green H
2
to olefins (“coupling process” for short) has been established for olefin production capacity of 70 × 10
4
t/a. The process encompasses multiple units
including carbon capture
the reverse water-gas shift reaction
Fischer-Tropsch synthesis to olefins and the subsequent separation of light and heavy hydrocarbons. Simulation results indicate that the coupling process offers significant carbon reduction benefits
achieving the carbon efficiency of 99.71% and net CO
2
emission of -1.83 t/t (the CO
2
emission for production 1 t olefins is -1.83 t). Enhancing CO
2
conversion rate can effectively reduce capital investment and improve energy efficiency
while the cost of H
2
production plays a critical role in determining the economic viability of the coupled process. When the CO
2
conversion rate increases from 47% to 79%
the energy efficiency of the coupling process reaches 40.92% and the total capital investment can be reduced by 38.79%. When the cost of H
2
production decreases from 0.367 USD/m
3
(standard conditions) to 0.114 USD/m
3
the production cost (refers to “olefins production cost”) of the coupled process can be reduced by 51.58%
reaching as low as 1006.1 USD/t. At the similar H
2
production cost (0.317 USD/m
3
)
the production cost of the process is 2100.8 USD/t
which is lower than the reported value (3580 USD/t) in literature.
SCOTT D , HALL C M , RUSHTON B , et al . A review of the IPCC sixth assessment and implications for tourism development and sectoral climate action [J ] . Journal of Sustainable Tourism , 2024 , 32 ( 9 ): 1725 - 1742 .
NAYLOR A W , FORD J . Vulnerability and loss and damage following the COP27 of the UN framework convention on climate change [J ] . Regional Environmental Change , 2023 , 23 ( 1 ): 38 .
刘苏 . 合成气直接转化制低碳烯烃技术现状与展望 [J ] . 中国石化 , 2024 , ( 8 ): 47 - 49 .
LIU S . Direct conversion of syngas to light olefins: Current status and prospects [J ] . Sinopec Monthly , 2024 , ( 8 ): 47 - 49 .
赵彤阳 , 吴文龙 . 我国烯烃行业碳达峰、碳中和路径分析 [J ] . 化学工业 , 2022 , 40 ( 1 ): 19 - 28 .
ZHAO T Y , WU W L . Analysis of carbon peak and carbon neutralization path in olefin industry in China [J ] . Chemical Industry , 2022 , 40 ( 1 ): 19 - 28 .
XIANG D , YANG S Y , QIAN Y , et al . Techno-economic analysis and comparison of coal based olefins processes [J ] . Energy Conversion and Management , 2016 , 110 : 33 - 41 .
QUARANTA E . Reviews in carbon capture, utilization and storage: 2022 [J ] . Frontiers in Energy Research , 2023 , 11 : 1286062 .
MA S C , CHEN G D , GUO M , et al . Path analysis on CO 2 resource utilization based on carbon capture using ammonia method in coal-fired power plants [J ] . Renewable and Sustainable Energy Reviews , 2014 , 37 : 687 - 697 .
WANG K Z , LI Z Q , GAO X H , et al . Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α -olefins—A review [J ] . Environmental Research , 2023 : 117715 .
WANG Q , CHEN Y , LI Z H . Research progress of catalysis for low-carbon olefins synthesis through hydrogenation of CO 2 [J ] . Journal of Nanoscience and Nanotechnology , 2019 , 19 ( 6 ): 3162 - 3172 .
高新华 , 夏世钦 , 梁洁 , 等 . 铁基催化剂活性相调控及其催化CO 2 加氢制线性 α -烯烃研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 5 ): 1 - 8 .
GAO X H , XIA S Q , LIANG J , et al . Research progress on active phases regulation of iron-based catalysts and their CO 2 catalytic hydrogenation to linear α -olefins [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 5 ): 1 - 8 .
LIN Q , CHENG M , ZHANG K , et al . Development of an iron-based Fischer-Tropsch catalyst with high attrition resistance and stability for industrial application [J ] . Catalysts , 2021 , 11 ( 8 ): 908 .
SAVOST’YANOV A P , YAKOVENKO R E , NAROCHNYI G B , et al . Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons [J ] . Kinetics and Catalysis , 2017 , 58 : 81 - 91 .
GAO X Y , CAI P , WANG Z Y , et al . Surface acidity/basicity and oxygen defects of metal oxide: Impacts on catalytic performances of CO 2 reforming and hydrogenation reactions [J ] . Topics in Catalysis , 2023 , 66 ( 5 ): 299 - 325 .
MEVAWALA C , BAI X W , HU J L , et al . Plant-wide modeling and techno-economic analysis of a direct non-oxidative methane dehydroaromatization process via conventional and microwave-assisted catalysis [J ] . Applied Energy , 2023 , 336 : 120795 .
CUEVAS-CASTILLO G A , MICHAILOS S , AKRAM M , et al . Techno-economic and life cycle assessment of olefin production through CO 2 hydrogenation within the power-to-X concept [J ] . Journal of Cleaner Production , 2024 , 469 : 143143 .
CHEN Q Q , WANG D F , GU Y , et al . Techno-economic evaluation of CO 2 -rich natural gas dry reforming for linear alpha olefins production [J ] . Energy Conversion and Management , 2020 , 205 : 112348 .
CHIU H H , YU B Y . Synthesis of green light olefins from direct hydrogenation of CO 2 . Part II: Detailed process design and optimization [J ] . Journal of the Taiwan Institute of Chemical Engineers , 2024 , 155 : 105287 .
SUN F M , YAN C F , GUO C Q , et al . Ni/Ce-Zr-O catalyst for high CO 2 conversion during reverse water gas shift reaction (RWGS) [J ] . International Journal of Hydrogen Energy , 2015 , 40 ( 46 ): 15985 - 15993 .
ZHAI P , XU C , GAO R , et al . Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe 5 C 2 catalyst [J ] . Angewandte Chemie International Edition , 2016 , 128 ( 34 ): 10056 - 10061 .
GILARDI M , BISOTTI F , TOBIESEN A , et al . An approach for VLE model development, validation, and implementation in Aspen Plus for amine blends in CO 2 capture: The HS 3 solvent case study [J ] . International Journal of Greenhouse Gas Control , 2023 , 126 : 103911 .
KONG J . Multiphase equilibrium in a novel batch dynamic VL-Cell unit with high mixing: Apparatus design and process simulation [D ] . Ontario : The University of Western Ontario , 2020 .
SHARIATMADAR TEHRANI M A , HAGHTALAB A . Correlation of ternary aqueous two-phase systems containing ionic liquids and salts using symmetric electrolyte local composition models: NRTL-NRF, UNIQUAC-NRF, and UNIQUAC [J ] . Journal of Chemical & Engineering Data , 2019 , 64 ( 12 ): 5448 - 5461 .
YANG Z B , BOEHM R C , BELL D C , et al . Maximizing sustainable aviation fuel usage through optimization of distillation cut points and blending [J ] . Fuel , 2023 , 353 : 129136 .
CAMPANARIO F J , ORTIZ F J G . Techno-economic assessment of bio-oil aqueous phase-to-liquids via Fischer-Tropsch synthesis and based on supercritical water reforming [J ] . Energy Conversion and Management , 2017 , 154 : 591 - 602 .
Aspen Technology Inc . Aspen Plus user guide [EB/OL ] . Massachusetts : Aspen Tech , ( 2022 )[ 2025-03-09 ] . http://www.aspentech.com/en/ http://www.aspentech.com/en/ .
国家统计局 . 中国价格统计年鉴2024 [M ] . 北京 : 中国统计出版社 , 2024 .
National Bureau of Statistics . China price statistical yearbook 2024 [M ] . Beijing : Chinese Statistic Press , 2024 .
盖德化工网 . 化工产品价格数据 [EB/OL ] . ( 2025-03-04 )[ 2025-03-09 ] . https://china.guidechem.com/price/ https://china.guidechem.com/price/ .
Guidechem Chemical Network . Chemical price data [EB/OL ] . ( 2025-03-04 )[ 2025-03-09 ] . https://china.guidechem.com/price/ https://china.guidechem.com/price/ .
OLANREWAJU O A , JIMOH A A , KHOLOPANE P A . DEA sensitivity analysis on the factors responsible for industrial energy consumption: Case study on the Canadian industrial sector [C ] // IEEE, Proceedings of 2012 IEEE international conference on industrial engineering and engineering management . Hong Kong : IEEE , 2012 : 6837961 .
WANG D F , GU Y , CHEN Q Q , et al . Direct conversion of syngas to alpha olefins via Fischer-Tropsch synthesis: Process development and comparative techno-economic-environmental analysis [J ] . Energy , 2023 , 263 : 125991 .
张轩 , 王凯 , 樊昕晔 , 等 . 电解水制氢成本分析 [J ] . 现代化工 , 2021 , 41 ( 12 ): 7 - 11 .
ZHANG X , WANG K , FAN X Y , et al . Cost analysis on hydrogen production via water electrolysis [J ] . Modern Chemical Industry , 2021 , 41 ( 12 ): 7 - 11 .
BUKAR A L , CHAITUSANEY S , KAWABE K . Optimal design of on-site PV-based battery grid-tied green hydrogen production system [J ] . Energy Conversion and Management , 2024 , 307 : 118378 .
TULUHONG A , CHANG Q P , XIE L R , et al . Current status of green hydrogen production technology: A review [J ] . Sustainability , 2024 , 16 ( 20 ): 9070 .
ACAR C , DINCER I . Selection criteria and ranking for sustainable H 2 production options [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 95 ): 40118 - 40137 .
DO T N , KIM J . Green C 2 -C 4 hydrocarbon production through direct CO 2 hydrogenation with renewable H 2 : Process development and techno-economic analysis [J ] . Energy Conversion and Management , 2020 , 214 : 112866 .
KATEBAH M , ABOUSRAFA A , LINKE P . Hydrogen production using piston reactor technology: Process design and integration for CO 2 emission reduction [J ] . Energy , 2022 , 259 : 124999 .
LEE J , CHO H , KIM J . Techno-economic analysis of on-site blue hydrogen production based on vacuum pressure adsorption: Practical application to real-world hydrogen refueling stations [J ] . Journal of Environmental Chemical Engineering , 2023 , 11 ( 2 ): 109549 .
QURESHI F , YUSUF M , IBRAHIM H , et al . Contemporary avenues of the hydrogen industry: Opportunities and challenges in the eco-friendly approach [J ] . Environmental Research , 2023 , 229 : 115963 .
REZAEI M , AKIMOV A , GRAY E M . Economics of renewable hydrogen production using wind and solar energy: A case study for Queensland, Australia [J ] . Journal of Cleaner Production , 2024 , 435 : 140476 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533