
浏览全部资源
扫码关注微信
太原理工大学 化学与化工学院,山西 太原 030024
朱浩楠(1999—),硕士研究生,研究方向为C1化学与多相催化,E-mail:971450815@qq.com。
丁传敏(1986—),博士,副教授,硕士研究生导师,研究方向为C1化学与多相催化,E-mail:dingchuanmin@tyut.edu.cn。
收稿:2025-03-04,
修回:2025-03-24,
纸质出版:2026-01-25
移动端阅览
朱浩楠,刘梦涛,吕岩等.不同前驱体对Rh@ZSM-5催化甲烷部分氧化反应性能的影响[J].低碳化学与化工,2026,51(1):24-31.
ZHU Haonan,LIU Mengtao,LV Yan,et al.Effects of different precursors on catalytic performances of Rh@ZSM-5 for partial oxidation of methane reaction[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):24-31.
朱浩楠,刘梦涛,吕岩等.不同前驱体对Rh@ZSM-5催化甲烷部分氧化反应性能的影响[J].低碳化学与化工,2026,51(1):24-31. DOI: 10.12434/j.issn.2097-2547.20250084.
ZHU Haonan,LIU Mengtao,LV Yan,et al.Effects of different precursors on catalytic performances of Rh@ZSM-5 for partial oxidation of methane reaction[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):24-31. DOI: 10.12434/j.issn.2097-2547.20250084.
甲烷(CH
4
)是兼具高热值与强温室效应的“双刃剑”能源,开发CH
4
催化转化技术对能源利用与环境保护至关重要。贵金属催化剂虽在甲烷部分氧化(POM)反应中展现出高CH
4
转化率与产物选择性,却面临成本高昂的问题,利用分子筛的限域效应增大活性金属分散度来提高贵金属利用率是目前可行的降本方法。为了进一步提高催化剂催化POM反应性能,通过水热合成法,分别以氯化铑和硝酸铑为前驱体制备了Rh@ZSM-5(Cl)和Rh@ZSM-5催化剂,并利用XRD、TEM和N
2
吸/脱附等技术对催化剂和ZSM-5载体进行了表征,系统探究了前驱体引入对催化剂催化性能的调控作用,测试了催化剂催化性能差异。结果表明,氯化铑前驱体诱导了O—Rh—Cl活性物种生成,该物种显著增强了活性金属与载体的相互作用。Rh@ZSM-5(Cl)在POM反应中展现出优异的催化性能,在900 ℃时,CH
4
转化率达到90.7%,H
2
选择性达到94.5%,归因于O—Rh—Cl活性物种促进了水煤气变换反应(WGSR)与POM反应的动态耦合。
Methane (CH
4
) is a “double-edged sword” energy source with high calorific value and stro
ng greenhouse effect
so the development of catalytic conversion technology for CH
4
is crucial for energy utilization and environmental protection. Although noble metal catalysts show high CH
4
conversion rates and product selectivities in partial oxidation of methane (POM) reaction
they face the problem of high cost. It is a feasible cost reduction method to improve the utilization rate of noble metals by increasing the dispersion of active metals through the domain-limiting effect of molecular sieves. In order to further improve the catalytic performances of catalysts for POM reaction
a hydrothermal synthesis method was used to prepare Rh@ZSM-5(Cl) and Rh@ZSM-5 catalysts with rhodium chloride and rhodium nitrate as precursors
respectively. The catalysts and ZSM-5 support were characterized by XRD
TEM
N
2
adsorption/desorption and so on. The regulatory effect of precursor introduction on the catalytic performances of catalysts were explored
and the differences of catalytic performances were tested. The results show that rhodium chloride precursor induces the generation of O—Rh—Cl active species
significantly enhancing the interaction between active metals and the carriers. Rh@ZSM-5(Cl) exhibits excellent catalytic performance for POM reaction
with CH
4
conversion rate of 90.7% and H
2
selectivity of 94.5% at 900 ℃
attributed to the dynamic coupling of water-gas shift reaction (WGSR) and POM reaction promoted by O—Rh—Cl active species.
GAMA A M C D F , JUCÁ J F T , FIRMO A B L . Greenhouse gas mitigation scenarios in the solid waste sector for compliance with the Brazilian NDC: Case study of the Recife metropolitan area, Brazil [J ] . Waste Management & Research , 2024 , 42 ( 1 ): 81 - 92 .
SHOEMAKER J K , SCHRAG D P , MOLINA M J , et al . What role for short-lived climate pollutants in mitigation policy? [J ] . Science , 2013 , 342 ( 6164 ): 1323 - 1324 .
ALIPOUR-DEHKORDI A , KHADEMI M H . Use of a micro-porous membrane multi-tubular fixed-bed reactor for tri-reforming of methane to syngas: CO 2 , H 2 O or O 2 side-feeding [J ] . International Journal of Hydrogen Energy , 2019 , 44 ( 60 ): 32066 - 32079 .
SIANG T J , JALIL A A , ABDULRASHEED A A , et al . Thermodynamic equilibrium study of altering methane partial oxidation for Fischer-Tropsch synfuel production [J ] . Energy , 2020 , 198 : 117394 .
ZHANG C X , LI Y J , CHU Z W , et al . Analysis of integrated CO 2 capture and utilization via calcium-looping in-situ dry reforming of methane and Fischer-Tropsch for synthetic fuels production [J ] . Separation and Purification Technology , 2024 , 329 : 125109 .
XIE X L , LI C , LU Z H , et al . Noble metal modified copper-exchanged mordenite zeolite (Cu-ex-MOR) catalysts for catalyzing the methane efficient gas-phase synthesis methanol [J ] . Energy , 2024 , 300 : 131595 .
LIANG D F , WANG Y H , WANG Y L , et al . Dry reforming of methane for syngas production over noble metals modified M-Ni@S-1 catalysts (M = Pt, Pd, Ru, Au) [J ] . International Journal of Hydrogen Energy , 2024 , 51 : 1002 - 1015 .
KONDRATENKO V A , KARIMOVA U , KASIMOV A A , et al . Methane conversion into synthesis gas over supported well-defined Pt, Rh or Ru nanoparticles: Effects of metal and support [J ] . Applied Catalysis A: General , 2021 , 619 : 118143 .
HOU Z Y , CHEN P , FANG H L , et al . Production of synthesis gas via methane reforming with CO 2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts [J ] . International Journal of Hydrogen Energy , 2006 , 31 ( 5 ): 555 - 561 .
SIANG T J , JALIL A A , ABDULRAHMAN A , et al . Enhanced carbon resistance and regenerability in methane partial oxidation to syngas using oxygen vacancy-rich fibrous Pd, Ru and Rh/KCC-1 catalysts [J ] . Environmental Chemistry Letters , 2021 , 19 ( 3 ): 2733 - 2742 .
陈岳飞 , 肖克 , 王朝阳 , 等 . 电催化水分解催化剂的研究进展 [J ] . 石油与天然气化工 , 2024 , 53 ( 2 ): 62 - 70 .
CHEN Y F , XIAO K , WANG C Y , et al . Research progress of electrocatalytic catalysts for water splitting [J ] . Chemical Engineering of Oil & Gas , 2024 , 53 ( 2 ): 62 - 70 .
XIAO Y , ZHANG J , LIU T L , et al . Constructing morphologically stable supported noble metal catalysts in heterogeneous catalysis: Mechanisms and strategies [J ] . Nano Energy , 2024 , 129 : 109975 .
CHAI Y C , SHANG W X , LI W J , et al . Noble metal particles confined in zeolites: Synthesis, characterization, and applications [J ] . 2019 , 6 ( 16 ): 1900299 .
LIANG S , ZOU L C , ZHENG L J , et al . Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries [J ] . 2022 , 12 ( 11 ): 2103097 .
ZHANG K , WANG N , MENG Y L , et al . Highly dispersed Pd-based pseudo-single atoms in zeolites for hydrogen generation and pollutant disposal [J ] . Chemical Science , 2024 , 15 ( 1 ): 379 - 388 .
GRUNDNER S , MARKOVITS M A C , LI G , et al . Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol [J ] . Nature Communications , 2015 , 6 ( 1 ): 7546 .
GÖLTL F , MICHEL C , ANDRIKOPOULOS P C , et al . Computationally exploring confinement effects in the methane-to-methanol conversion over iron-oxo centers in zeolites [J ] . ACS Catalysis , 2016 , 6 ( 12 ): 8404 - 8409 .
SZÉCSÉNYI Á , KHRAMENKOVA E , CHERNYSHOV I Y , et al . Breaking linear scaling relationships with secondary interactions in confined space: A case study of methane oxidation by Fe/ZSM-5 zeolite [J ] . ACS Catalysis , 2019 , 9 ( 10 ): 9276 - 9284 .
SNYDER B E R , VANELDEREN P , BOLS M L , et al . The active site of low-temperature methane hydroxylation in iron-containing zeolites [J ] . Nature , 2016 , 536 ( 7616 ): 317 - 321 .
GANGARAJULA Y , HONG F , LI Q H , et al . Operando induced strong metal-support interaction of Rh/CeO 2 catalyst in dry reforming of methane [J ] . Applied Catalysis B: Environmental , 2024 , 343 : 123503 .
ZHANG Y , GLARBORG P , ANDERSSON M P , et al . Sulfur poisoning and regeneration of Rh-ZSM-5 catalysts for total oxidation of methane [J ] . Applied Catalysis B: Environmental , 2020 , 277 : 119176 .
SONG H , MENG X G , WANG Z J , et al . Visible-light-mediated methane activation for steam methane reforming under mild conditions: A case study of Rh/TiO 2 catalysts [J ] . ACS Catalysis , 2018 , 8 ( 8 ): 7556 - 7565 .
TAN X Y , YU C , SONG X D , et al . Robust O—Pd—Cl catalyst-electrolyte interfaces enhance CO tolerance of Pd/C ca talyst for stable CO 2 electroreduction [J ] . Nano Energy , 2022 , 104 : 107957 .
LAN Z J , YU Y L , LI H B , et al . Thermal catalytic mechanism for the metal ions (Cu, In, Pd and Pt) modified TiO 2 on degradation of HCHO [J ] . Materials Science in Semiconductor Processing , 2021 , 123 : 105547 .
LYU J H , HU H L , RUI J Y , et al . Nitridation: A simple way to improve the catalytic performance of hierarchical porous ZSM-5 in benzene alkylation with methanol [J ] . Chinese Chemical Letters , 2017 , 28 ( 2 ): 482 - 486 .
DAI W J , KOUVATAS C , TAI W S , et al . Platelike MFI crystals with controlled crystal faces aspect ratio [J ] . Journal of the American Chemical Society , 2021 , 143 ( 4 ): 1993 - 2004 .
YI H H , GUO S I , YUAN Y T , et al . Influence of group VIB metals introduced into zeolite on the adsorption performance of VOCs in cooking oil fumes [J ] . Chemical Engineering Journal , 2024 , 495 : 153074 .
TOYOSHIMA R , KAWAI J , ISEGAWA K , et al . Detailed characterization of MoO x -modified Rh metal particles by ambient-pressure XPS and DFT calculations [J ] . The Journal of Physical Chemistry C , 2021 , 125 ( 8 ): 4540 - 4549 .
TRZCINSKI M , BALCEROWSKA-CZERNIAK G , BUKALUK A . XPS studies of the initial oxidation of polycrystalline Rh surface [J ] . Catalysts , 2020 , 10 ( 6 ): 617 .
HE Y S , CHEN G , KAWI S , et al . Catalytic study of MCM-41 immobilized RhCl 3 for the hydroformylation of styrene [J ] . Journal of Porous Materials , 2009 , 16 ( 6 ): 721 - 729 .
WU D F , LIU S X , ZHONG M Q , et al . Nature and dynamic evolution of Rh single atoms trapped by CeO 2 in CO hydrogenation [J ] . ACS Catalysis , 2022 , 12 ( 19 ): 12253 - 12267 .
LV G J , RUAN H , ZOU X Y , et al . Solvent-free synthesis of hierarchical tungsten-doped MFI zeolite for cyclohexene epoxidation reaction [J ] . Microporous and Mesoporous Materials , 2025 , 381 : 113345 .
PIUMETTI M , HUSSAIN M , FINO D , et al . Mesoporous silica supported Rh catalysts for high concentration N 2 O decomposition [J ] . Applied Catalysis B: Environmental , 2015 , 165 : 158 - 168 .
王涛 . 用于甲烷部分氧化反应的Pt@ZSM-5催化剂中金属再分散和抗积碳性能研究 [D ] . 太原 : 太原理工大学 , 2022 .
WANG T . Study on metal redispersion and carbon resistance of Pt@ZSM-5 catalyst for partial oxidation of methane [D ] . Taiyuan : Taiyuan University of Technology , 2022 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533