浏览全部资源
扫码关注微信
1.西安交通大学 化学工程与技术学院,陕西 西安 710049
2.中石化安全工程研究院有限公司 化学品安全全国重点实验室,山东 青岛 266071
王智超(1999—),硕士研究生,研究方向为乙烷化学链脱氢制乙烯载氧体设计,E-mail:zhichao-wang@stu.xjtu.edu.cn。
孙冰(1985—),博士,研究员,研究方向为化工安全与本质安全工艺开发,E-mail:sunb.qday@sinopec.com;
吴志强(1987—),博士,教授,研究方向为化学链转化技术,E-mail:zhiqiang-wu@mail.xjtu.edu.cn。
收稿日期:2025-02-28,
修回日期:2025-04-07,
纸质出版日期:2025-08-25
移动端阅览
王智超,梁威,刘根等.Mn2O3@SiO2载氧体用于乙烷化学链氧化脱氢制乙烯性能研究[J].低碳化学与化工,2025,50(8):133-143.
WANG Zhichao,LIANG Wei,LIU Gen,et al.Performance study of Mn2O3@SiO2 oxygen carrier for chemical looping oxidative dehydrogenation of ethane to ethylene[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):133-143.
王智超,梁威,刘根等.Mn2O3@SiO2载氧体用于乙烷化学链氧化脱氢制乙烯性能研究[J].低碳化学与化工,2025,50(8):133-143. DOI: 10.12434/j.issn.2097-2547.20250078.
WANG Zhichao,LIANG Wei,LIU Gen,et al.Performance study of Mn2O3@SiO2 oxygen carrier for chemical looping oxidative dehydrogenation of ethane to ethylene[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):133-143. DOI: 10.12434/j.issn.2097-2547.20250078.
乙烷化学链氧化脱氢(Chemical looping oxidative dehydrogenation,CL-ODH)是一种利用载氧体的晶格氧将乙烷转化为乙烯的绿色高效过程。然而,该过程往往面临反应活性或乙烯选择性难以兼顾的问题,导致乙烷转化率或乙烯选择性较低。提出了SiO
2
包覆Mn
2
O
3
载氧体的设计策略,合成了具有不同
n
(Mn)/
n
(Si)的Mn
2
O
3
@SiO
2
载氧体。采用XRD、N
2
物理吸/脱附、H
2
-TPR和XPS等方法,对载氧体的晶相结构、织构性质、还原性能和表面物种化学状态等进行了表征。结果表明,SiO
2
在Mn
2
O
3
表面形成包覆层,有助于优化载氧体的孔结构,增大载氧体的比表面积,减小Mn
2
O
3
晶粒尺寸,提高其分散性,从而提升反应活性。同时,SiO
2
的引入增大了近表面Mn—O结合能,减小了晶格氧的释放速率,减小了表面非选择性氧物种含量,显著提升了乙烯选择性。在700 ℃、20%C
2
H
6
/80%Ar(50 mL/min)和反应时间2 min条件下,
n
(Mn)/
n
(Si)为0.9的Mn
2
O
3
@SiO
2
载氧体作用下,乙烷转化率达42.8%,乙烯选择性达73.4%。
Chemical looping oxidative dehydrogenation (CL-ODH) of ethane is a green and efficient process that uses lattice oxygen of oxygen carrier to convert ethane into ethylene. However
this process often faces the problem that the reaction activity or ethylene selectivity is difficult to balance
resulting in low ethane conversion rate or ethylene selectivity. A design strategy of SiO
2
coated Mn
2
O
3
oxygen carriers was proposed
and Mn
2
O
3
@SiO
2
oxygen carriers with different
n
(Mn)/
n
(Si) were synthesized. XRD
N
2
physical absorption/desorption
H
2
-TPR and XPS were used to characterize the crystal structures
textural properties
reduction properties and surface species chemical states of the oxygen carriers. The results show that SiO
2
forms a coating layer on the surface of Mn
2
O
3
which can optimize the pore structure and increase the specific surface area of oxygen carriers
reduce the grain size of Mn
2
O
3
improve the dispersion
and thus improve the reaction activity. At the same time
the introduction of SiO
2
enhances the near-surface Mn—O binding energy
reduces the release rate of lattice oxygen
reduces the content of non-selective oxygen species on the surface and significantly improves the ethylene selectivity. Under the conditions of 700 ℃
20%C
2
H
6
/80%Ar (50 mL/min)
reaction time of 2 min
with the Mn
2
O
3
@SiO
2
oxygen carrier (
n
(Mn)/
n
(Si) is 0.9)
ethane conversion achieves 42.8% and ethylene selectivity achieves 73.4%.
GÄRTNER C A , VAN VEEN A C , LERCHER J A . Oxidative dehydrogenation of ethane: Common principles and mechanistic aspects [J ] . ChemCatChem , 2013 , 5 ( 11 ): 3196 - 3217 .
REN T , PATEL M , BLOK K . Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes [J ] . Energy , 2006 , 31 ( 4 ): 425 - 451 .
AMGHIZAR I , VANDEWALLE L A , VAN GEEM K M , et al . New trends in olefin production [J ] . Engineering , 2017 , 3 ( 2 ): 171 - 178 .
BHASIN M M . Is true ethane oxydehydrogenation feasible? [J ] . Topics in Catalysis , 2003 , 23 ( 1 ): 145 - 149 .
JIANG C R , HE F , ZHANG L J , et al . Trends in industrial ethylene production: Innovation in process and catalyst design [J ] . Chem Catalysis , 2025 , 5 ( 1 ): 101241 .
张国霞 , 郝鹏波 , 焦念明 , 等 . 轻质烷烃氧化裂解制低碳烯烃催化剂研究进展 [J ] . 低碳化学与化工 , 2025 , 50 ( 6 ): 34 - 42 .
ZHANG G X , HAO P B , JIAO N M , et al . Research progress on oxidative cracking catalysts of light alkanes to light olefins [J ] . Low-Carbon Chemistry and Chemical Engineering , 2025 , 50 ( 6 ): 34 - 42 .
孙嘉辰 , 裴春雷 , 陈赛 , 等 . 化学链低碳烷烃氧化脱氢技术进展 [J ] . 化工学报 , 74 ( 1 ): 205 - 223 .
SUN J C , PEI C L , CHEN S , et al . Advances in chemical-looping oxidative dehydrogenation of light alkanes [J ] . CIESC Journal , 2023 , 74 ( 1 ): 205 - 223 .
TIAN X , ZHENG C H , LI F X , et al . Co and Mo Co-doped Fe 2 O 3 for selective ethylene production via chemical looping oxidative dehydrogenation [J ] . ACS Sustainable Chemistry & Engineering , 2021 , 9 ( 23 ): 8002 - 8011 .
HU J B , ZHAO Y L , LIU F W , et al . Low-temperature oxidative coupling of methane: A review [J ] . Materials Today Sustainability , 2025 , 29 : 101053 .
HARIBAL V P , NEAL L M , LI F X . Oxidative dehydrogenation of ethane under a cyclic redox scheme— Process simulations and analysis [J ] . Energy , 2017 , 119 : 1024 - 1035 .
DING W X , ZHAO K , JIANG S C , et al . Alkali-metal enhanced LaMnO 3 perovskite oxides for chemical looping oxidative dehydrogenation of ethane [J ] . Applied Catalysis A: General , 2021 , 609 : 117910 .
DING W X , ZHAO K , JIANG S C , et al . Ca 2 MnO 4 -layered perovskite modified by NaNO 3 for chemical-looping oxidative dehydrogenation of ethane to ethylene [J ] . Chinese Journal of Chemical Engineering , 2024 , 68 : 53 - 64 .
HU G C , YU Z Y , LIU Y Z , et al . Molybdenum-promoted CuMn 2 O 4 oxygen carrier for chemical looping oxidative dehydrogenation of ethane [J ] . Industrial & Engineering Chemistry Research , 2024 , 63 ( 20 ): 9018 - 9025 .
CHEN H T , XING Z F , SONG D , et al . Binary Li/Na tungstates modified Mg 6 MnO 8 as redox catalysts for enhanced performance of chemical looping oxidative dehydrogenation of ethane [J ] . Chemical Engineering Journal , 2024 , 485 : 150146 .
WANG J W , LIANG X C , XING Z F , et al . Ce-doped LaMnO 3 redox catalysts for chemical looping oxidative dehydrogenation of ethane [J ] . Catalysts , 2023 , 13 ( 1 ): 131 .
WEI Y L , YANG W , YANG Z W . An excellent universal catalyst support-mesoporous silica: Preparation, modification and applications in energy-related reactions [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 16 ): 9537 - 9565 .
冯文磊 , 杨文师 , 陈健勇 , 等 . Ni@SiO 2 核壳型催化剂上孔调控对甲烷干重整催化性能的影响 [J ] . 低碳化学与化工 , 2024 , 49 ( 6 ): 9 - 16 .
FENG W L , YANG W S , CHEN J Y , et al . Effects of pore modulation on catalytic performance of Ni@SiO 2 core-shell catalysts for methane dry reforming [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 6 ): 9 - 16 .
AKRAM W , SANJAY , HASSAN M A . Chemical looping combustion with nanosize oxygen carrier: A review [J ] . International Journal of Environmental Science and Technology , 2021 , 18 ( 3 ): 787 - 798 .
SUNNY A A , MENG Q , KUMAR S , et al . Nanoscaled oxygen carrier-driven chemical looping for carbon neutrality: Opportunities and challenges [J ] . Accounts of Chemical Research , 2023 , 56 ( 23 ): 3404 - 3416 .
LIU Y , QIN L , CHENG Z , et al . Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation [J ] . Nature Communications , 2019 , 10 ( 1 ): 5503 .
KIM S , ANNAMALAI L , LOBO R F . Silica-encapsulated Fe 2 O 3 oxygen carriers for selective chemical looping combustion of hydrogen [J ] . Chemical Engineering Journal , 2023 , 455 : 140919 .
ZHU X L , GUO H F , LI R Y , et al . Regulating lattice oxygen mobility of FeO x redox catalyst via W-doping for enhanced chemical looping oxidative dehydrogenation of ethane [J ] . Chemical Engineering Journal , 2023 , 470 : 144219 .
THOMMES M , KANEKO K , NEIMARK A V , et al . Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report) [J ] . Pure and Applied Chemistry , 2015 , 87 ( 9/10 ): 1051 - 1069 .
ZHANG H W , SAMSUDIN I B , JAENICKE S , et al . Zeolites in catalysis: Sustainable synthesis and its impact on properties and applications [J ] . Catalysis Science & Technology , 2022 , 12 ( 19 ): 6024 - 6039 .
GUAN H Y , LEBLANC R J , XIE S Y , et al . Recent progress in the syntheses of mesoporous metal-organic framework materials [J ] . Coordination Chemistry Reviews , 2018 , 369 : 76 - 90 .
ZHANG X D , LI H X , HOU F L , et al . Synthesis of highly efficient Mn 2 O 3 catalysts for CO oxidation derived from Mn-MIL-100 [J ] . Applied Surface Science , 2017 , 411 : 2733 .
GAO Y F , HAERI F , HE F , et al . Alkali metal-promoted La x Sr 2- x FeO 4- δ redox catalysts for chemical looping oxidative dehydrogenation of ethane [J ] . ACS Catalysis , 2018 , 8 ( 3 ): 1757 - 1766 .
GAO Y F , NEAL L M , LI F X . Li-promoted La x Sr 2- x FeO 4- δ core-shell redox catalysts for oxidative dehydrogenation of ethane under a cyclic redox scheme [J ] . ACS Catalysis , 2016 , 6 ( 11 ): 7293 - 7302 .
QING M , YANG Y , WU B S , et al . Modification of Fe-SiO 2 interaction with zirconia for iron-based Fischer-Tropsch catalysts [J ] . Journal of Catalysis , 2011 , 279 ( 1 ): 111 - 122 .
YUSUF S , NEAL L M , LI F X . Effect of promoters on manganese-containing mixed metal oxides for oxidative dehydrogenation of ethane via a cyclic redox scheme [J ] . ACS Catalysis , 2017 , 7 ( 8 ): 5163 - 5173 .
MAO M , WANG X M , ZHOU Y C , et al . Enhancement of ethylene selectivity in chemical looping oxidative dehydrogenation of ethane using manganese-based redox catalysts supported on HY zeolite [J ] . Applied Catalysis A: General , 2024 , 687 : 119974 .
WANG T , GAO Y F , LIU Y Z , et al . Core-shell Na 2 WO 4 /CuMn 2 O 4 oxygen carrier with high oxygen capacity for chemical looping oxidative dehydrogenation of ethane [J ] . Fuel , 2021 , 303 : 121286 .
BRODY L , NEAL L , LIU J C , et al . Autothermal chemical looping oxidative dehydrogenation of ethane: Redox catalyst performance, longevity, and process analysis [J ] . Energy & Fuels , 2022 , 36 ( 17 ): 9736 - 9744 .
TIAN Y , DUDEK R B , WESTMORELAND P R , et al . Effect of sodium tungstate promoter on the reduction kinetics of CaMn 0.9 Fe 0.1 O 3 for chemical looping-oxidative dehydrogenation of ethane [J ] . Chemical Engineering Journal , 2020 , 398 : 125583 .
GAO Y F , WANG X J , LIU J C , et al . A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane [J ] . Science Advances , 2020 , 6 ( 17 ): eaaz9339 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构