
浏览全部资源
扫码关注微信
1.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
2.太原理工大学 煤科学与技术教育部重点实验室,山西 太原 030024
3.太原理工大学 环境与生态学院,山西 晋中 030600
吴俊宏(2000—),硕士研究生,研究方向为气体净化,E-mail:1976027979@qq.com。
武蒙蒙(1985—),博士,副教授,研究方向为气体净化,E-mail:wumengmeng@tyut.edu.cn。
收稿:2025-02-27,
修回:2025-03-24,
纸质出版:2026-01-25
移动端阅览
吴俊宏,段新伟,杨敏等.微波辅助合成镁铝类水滑石基氧化物及其在含O2/H2S气氛下的COS水解催化行为[J].低碳化学与化工,2026,51(1):98-107.
WU Junhong,DUAN Xinwei,YANG Min,et al.Microwave-assisted synthesis of MgAl hydrotalcite-based oxides and their catalytic performance for COS hydrolysis under atmosphere containing O2/H2S[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):98-107.
吴俊宏,段新伟,杨敏等.微波辅助合成镁铝类水滑石基氧化物及其在含O2/H2S气氛下的COS水解催化行为[J].低碳化学与化工,2026,51(1):98-107. DOI: 10.12434/j.issn.2097-2547.20250073.
WU Junhong,DUAN Xinwei,YANG Min,et al.Microwave-assisted synthesis of MgAl hydrotalcite-based oxides and their catalytic performance for COS hydrolysis under atmosphere containing O2/H2S[J].Low-Carbon Chemistry and Chemical Engineering,2026,51(1):98-107. DOI: 10.12434/j.issn.2097-2547.20250073.
COS水解催化在工业气净化脱硫中具有重要意义。镁铝类水滑石基氧化物(MgAl-MMO)在简单气氛(COS + H
2
O)下可有效催化COS水解,然而O
2
/H
2
S对MgAl-MMO的催化影响作用尚不明晰,同时现有催化剂合成方法耗时较长。探索了微波辅助合成MgAl-MMO的可行性,并研究了其在反应气含O
2
/H
2
S下的催化行为。结果表明,80 ℃微波晶化及
n
(Mg)/
n
(Al) = 2时所制催化剂COS水解性能最佳,其在反应气含1.0%(体积分数)O
2
气氛中,COS转化率及H
2
S选择性均为100.0%并保持540 min;但O
2
体积分数增大至1.5%时,COS转化率及H
2
S选择性明显降低(分别下降63.2%与68.8%),主要归因于高O
2
体积分数下H
2
S催化氧化导致催化剂表面硫沉积加剧;无O
2
环境中H
2
S在催化过程中导致催化剂中毒,且中毒程度随H
2
S质量浓度增大而加剧:含198 mg/m
3
H
2
S下COS转化率和H
2
S选择性在100 min时分别降至37.4%和5.3%;1.0% O
2
与198 mg/m
3
H
2
S共存进一步加快催化剂失活,加剧了表面硫酸盐化及中弱碱相对含量减小,且H
2
S对催化剂的不利影响显著大于O
2
,反应85 min时COS转化率与H
2
S选择性分别仅为20.2%、1.4%。
COS hydrolysis catalysis is important in industrial gas purification and desulfurization. MgAl hydrotalcite-based oxides (MgAl-MMO) can effectively catalyze COS hydrolysis in a simple atmosphere (COS + H
2
O). However
the catalytic effect of O
2
/H
2
S on MgAl-MMO is not clear
and the existing synthesis methods are time-consuming. The feasibility of microwave-assisted synthesis of MgAl-MMO was explored and its catalytic
behavior under reaction gas containing O
2
/H
2
S was investigated. The results show that the best performance of the catalyst for COS hydrolysis is achieved by microwave crystallization at 80 ℃ and
n
(Mg)/
n
(Al) of 2. The COS conversion rate and H
2
S selectivity of the catalysts are 100.0% and maintain for 540 min in in the reaction gas (O
2
volume fraction of 1.0%). However
the COS conversion rate and H
2
S selectivity decrease significantly (by 63.2% and 68.8%
respectively) when the O
2
volume fraction increases to 1.5%
which is mainly attributed to the increase of sulfur deposition on the catalyst surface due to the catalytic oxidation of H
2
S at high O
2
volume fraction. H
2
S in the O
2
-free environment leads to catalyst poisoning during the catalytic process
and the degree of poisoning increases with the increase of H
2
S mass concentration: COS conversion rate and H
2
S selectivity with 198 mg/m
3
H
2
S decrease to 37.4% and 5.3% after 100 mintutes
respectively. The coexistence of 1.0% O
2
and 198 mg/m
3
H
2
S further accelerate the catalyst deactivation
exacerbate the surface sulfation and the relative content of medium bases and weak bases decreased significantly
and the detrimental effect of H
2
S on the catalyst is significantly greater than that of O
2
with the COS conversion rate and the H
2
S selectivity of only 20.2% and 1.4%
respectively
after 85 minutes of reaction.
SHI N , ZHU H X , QIN J M , et al . Hydrolysis of carbonyl sulfide using non-ionic surfactant-modified mesoporous γ -Al 2 O 3 catalysts with high efficiency [J ] . Separation and Purification Technology , 2025 , 354 : 129356 .
ZHAO S Z , KANG D J , LIU Y P , et al . Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO 2 nanorods with improved activity for carbonyl sulfide hydrolysis [J ] . ACS Catalysis , 2020 , 10 ( 20 ): 11739 - 11750 .
GU J N , LIANG J X , HU S J , et al . Enhanced removal of COS from blast furnace gas via catalytic hydrolysis over Al 2 O 3 -based catalysts: Insight into the role of alkali metal hydroxide [J ] . Separation and Purification Technology , 2022 , 295 : 121356 .
RENDA S , BARDA D , PALMA V . Recent solutions for efficient carbonyl sulfide hydrolysis: A review [J ] . Industrial & Engineering Chemistry Research , 2022 , 61 ( 17 ): 5685 - 5697 .
WEI Z , ZHANG X , ZHANG F L , et al . Boosting carbonyl sulfide catalytic hydrolysis performance over N-doped Mg-Al oxide derived from MgAl-layered double hydroxide [J ] . Journal of Hazardous Materials , 2021 , 407 : 124546 .
GUO H B , TANG L H , LI K , et al . Influence of the preparation conditions of MgAlCe catalysts on the catalytic hydrolysis of carbonyl sulfide at low temperature [J ] . RSC Advances , 2015 , 5 ( 26 ): 20530 - 20537 .
BENITO P , LABAJOS F M , RIVES V . Microwaves and layered double hydroxides: A smooth understanding [J ] . Pure and Applied Chemistry , 2009 , 81 ( 8 ): 1459 - 1471 .
CAO Q , LIN Y T , LI Y R , et al . Hydrolysis of carbonyl sulfide in blast furnace gas using alkali metal-modified γ -Al 2 O 3 catalysts with high sulfur resistance [J ] . ACS Omega , 2023 , 8 ( 39 ): 35608 - 35618 .
USMANI A , THARAT B , WATWIANGKHAM A , et al . Enhancing kinetics of carbonyl sulfide hydrolysis using Pt-supported Al 2 O 3 catalysts: First-principles-informed energetic span analysis [J ] . The Journal of Physical Chemistry C , 2023 , 127 ( 19 ): 9002 - 9012 .
WANG B R , WU P , SHEN K , et al . Enhancement mechanism of lanthanum-modified KAl 2 O 3 catalyst for carbonyl sulfide hydrolysis [J ] . Separation and Purification Technology , 2025 , 354 : 129047 .
SUN X , RUAN H T , SONG X , et al . Research into the reaction process and the effect of reaction conditions on the simultaneous removal of H 2 S, COS and CS 2 at low temperature [J ] . RSC Advances , 2018 , 8 ( 13 ): 6996 - 7004 .
黄俊 , 刘羿良 , 吴鹏 , 等 . TiAl基羰基硫水解催化剂的中毒机制与抗氧性能研究 [J ] . 化工学报 , 2022 , 73 ( 10 ): 4461 - 4471 .
HUANG J , LIU Y L , WU P , et al . Poisoning mechanism and antioxidant performance of TiAl-based carbonyl sulfur hydrolysis catalyst [J ] . CIESC Journal , 2022 , 73 ( 10 ): 4461 - 4471 .
WU P , SHEN K , WANG B R , et al . Nanorod Al 2 O 3 catalysts for simultaneous hydrolytic removal of COS and CS 2 via crystal surface modulation: Experimental and theoretical studies [J ] . Separation and Purification Technology , 2024 , 341 : 126790 .
HUANG Y R , ZHANG R , ZHANG M X , et al . Sheet-assembled Zn-based sorbents towards highly efficient desulfurization of hot coal gas: H 2 S-absorption/COS-release behavior and sulfur-release inhibiting mechanism [J ] . Separation and Purification Technology , 2025 , 355 : 129474 .
魏征 , 张鑫 , 张凤莲 , 等 . 镁铝水滑石衍生复合氧化物的COS水解性能 [J ] . 环境科学 , 2019 , 40 ( 10 ): 4423 - 4430 .
WEI Z , ZHANG X , ZHANG F L , et al . Hydrolysis of COS over MgAl mixed oxides derived from hydrotalcites [J ] . Environmental Science , 2019 , 40 ( 10 ): 4423 - 4430 .
张雨萌 , 魏征 , 张鑫 , 等 . 氮掺杂锌铝水滑石衍生复合氧化物上羰基硫的催化水解性能 [J ] . 工业催化 . 2020 , 28 ( 11 ): 31 - 36 .
ZHANG Y M , WEI Z , ZHANG X , et al . The catalytic hydrolysis performance of carbonyl sulfide over N-doped composite oxides derived from zinc-aluminum hydrotalcite [J ] . Industrial Catalysis , 2020 , 28 ( 11 ): 31 - 36 .
ABUSHAWISH A , ALMANASSRA I W , MANASRAH A D , et al . In-depth analysis of MgAl layered double oxide AC composite for sulfate removal from United Arab Emirates ground water: Synthesis optimization, fixed-bed performance, and economic feasibility [J ] . Separation and Purification Technology , 2024 , 347 : 127594 .
TICHIT D , DURAND R , ROLLAND A , et al . Selective half-hydrogenation of adiponitrile to aminocapronitrile on Ni-based catalysts elaborated from lamellar double hydroxide precursors [J ] . Journal of Catalysis , 2002 , 211 ( 2 ): 511 - 520 .
KANNAN S , JASRA R V . Microwave assisted rapid crystallization of Mg-M(III) hydrotalcite where M(III) = Al, Fe or Cr [J ] . Journal of Materials Chemistry , 2000 , 10 ( 10 ): 2311 - 2314 .
YI H H , WANG H Y , TANG X L , et al . Effect of calcination temperature on catalytic hydrolysis of COS over CoNiAl catalysts derived from hydrotalcite precursor [J ] . Industrial & Engineering Chemistry Research , 2011 , 50 ( 23 ): 13273 - 13279 .
夏长久 , 彭欣欣 , 林民 , 等 . “溶解-再结晶”技术在提升分子筛材料催化性能方面的应用 [J ] . 石油学报(石油加工) , 2016 , 32 ( 4 ): 830 - 840 .
XIA C J , PENG X X , LIN M , et al . Updating the catalytic performance of zeolite materials by employing “dissolution-recrystallization” technology [J ] . Acta Petrolei Sinica (Petroleum Processing Section) , 2016 , 32 ( 4 ): 830 - 840 .
JEON H , OH M , HAN J W , et al . Understanding remarkable promotional effects of Zn on alumina in catalytic hydrolysis of perfluorocarbon [J ] . Journal of Catalysis , 2023 , 426 : 361 - 367 .
WANG Q , O’HARE D . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets [J ] . Chemical Reviews , 2012 , 112 ( 7 ): 4124 - 4155 .
雷淦昌 , 郑勇 , 曹彦宁 , 等 . 钾改性氧化铝基羰基硫水解催化剂及其失活机理 [J ] . 物理化学学报 , 2023 , 39 ( 9 ): 2210038 .
LEI G C , ZHENG Y , CAO Y N , et al . Deactivation mechanism of COS hydrolysis over potassium modified alumina [J ] . Acta Physico-Chimica Sinica , 2023 , 39 ( 9 ): 2210038 .
贾银娟 , 王灿 , 吴双 , 等 . Al 2 O 3 -Zn-K催化水解COS和CS 2 的研究 [J ] . 分子催化 , 2022 , 36 ( 2 ): 171 - 179 .
JIA Y J , WANG C , WU S , et al . Catalytic hydrolysis of COS and CS 2 by Al 2 O 3 -Zn-K [J ] . Journal of Molecular Catalysis (China) , 2022 , 36 ( 2 ): 171 - 179 .
SONG X , SUN L N , GUO H B , et al . Experimental and theoretical studies on the influence of carrier gas for COS catalytic hydrolysis over MgAlCe composite oxides [J ] . ACS Omega , 2019 , 4 ( 4 ): 7122 - 7127 .
MONTZKA S A , CALVERT P , HALL B D , et al . On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO 2 [J ] . Journal of Geophysical Research: Atmospheres , 2007 , 112 ( 9 ): D09302 .
YANG K , CHEN J J , MI J X , et al . More than just a reactant: H 2 O promotes carbonyl sulfide hydrolysis activity over Ni-MgAl-LDO by inhibiting H 2 S poisoning [J ] . Fuel , 2023 , 333 : 126503 .
梁丽彤 , 上官炬 , 樊惠玲 , 等 . 高浓度COS水解催化剂抗硫中毒性能的孔隙效应 [J ] . 煤炭学报 , 2012 , 37 ( 12 ): 2102 - 2106 .
LIANG L T , SHANGGUAN J , FAN H L , et al . Effects of pore structure on anti-sulfur poisoning of the catalyst for high concentration carbonyl sulfide hydrolysis [J ] . Journal of Coal Society , 2012 , 37 ( 12 ): 2102 - 2106 .
WU G D , WANG X L , WEI W , et al . Fluorine-modified Mg-Al mixed oxides: A solid base with variable basic sites and tunable basicity [J ] . Applied Catalysis A: General , 2010 , 377 ( 1/2 ): 107 - 113 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533