1.华北电力大学(保定) 环境科学与工程系,河北 保定 071003
2.国家能源集团新能源技术研究院有限公司,北京 昌平 102209
3.华北电力大学(保定) 河北省燃煤电站烟气多污染物协同控制重点实验室,河北 保定 071003
杨扉妃(1999—),硕士研究生,研究方向为大气污染控制,E-mail:371582591@qq.com。
张盼(1986—),博士,副教授,研究方向为大气污染控制,E-mail:zhangpan01@ncepu.edu.cn。
收稿:2025-02-21,
修回:2025-03-17,
纸质出版:2025-11-25
移动端阅览
杨扉妃,董润泽,杨阳等.铈铝复合催化剂协同介质阻挡放电对六氟化硫的降解性能研究[J].低碳化学与化工,2025,50(11):86-96.
YANG Feifei,DONG Runze,YANG Yang,et al.Study on degradation performance of sulfur hexafluoride by cerium-aluminum composite catalyst synergized with dielectric barrier discharge[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):86-96.
杨扉妃,董润泽,杨阳等.铈铝复合催化剂协同介质阻挡放电对六氟化硫的降解性能研究[J].低碳化学与化工,2025,50(11):86-96. DOI: 10.12434/j.issn.2097-2547.20250063.
YANG Feifei,DONG Runze,YANG Yang,et al.Study on degradation performance of sulfur hexafluoride by cerium-aluminum composite catalyst synergized with dielectric barrier discharge[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):86-96. DOI: 10.12434/j.issn.2097-2547.20250063.
六氟化硫(SF
6
)因其极强的温室效应和高度的化学惰性,已成为全球减排治理的重点对象。而现有的热催化和光催化等技术普遍存在降解效率低、能耗高等问题。基于溶胶-凝胶法制备了一种新型铈铝复合催化剂(
i
-AlCeO
2
),并结合介质阻挡放电(DBD)等离子体技术,实现了对SF
6
的高效降解。对催化剂物化性质进行了表征,对催化剂
n
(Al)/
n
(Ce)(
i
= 7/1、5/3、3/5和1/7)及DBD输入功率(40~60 W)等关键参数进行了优化,并结合XPS表征解析了等离子体激发下催化剂表面Ce
3+
向Ce
4+
的转化及氧空位的生成机制。结果表明,通过调节
n
(Al)/
n
(Ce)及输入功率,可显著增大SF
6
的降解效率。以Ar为载气、SF
6
体积分数为1.53%,在输入功率为50 W的条件下,催化剂3/5-AlCeO
2
展现出较好催化降解性能,降解效率最大为99.8%,产能率为28.99 g/(kW·h),且连续运行40 min后降解效率依然能保持在99%以上。分析发现,3/5-AlCeO
2
具备13.08 nm的大孔径和较高的表面氧含量,二者协同DBD产生的高能电子对SF
6
的预解离作用,促进Ce
3+
介导的氧自由基(·O)攻击S—F键,实现了SF
6
的深度降解。本研究旨在通过多尺度催化剂设计与等离子体协同激发策略,突破SF
6
高效低耗降解的技术瓶颈,并阐明其构效关系与反应机理,为相关领域的深入研究提供参考。
Sulfur hexafluoride (SF
6
) has become a key target of global emission reduction efforts due to its extremely strong greenhouse effect and high chemical inertness. However
existing technologies such as thermal catalysis and photocatalysis generally face problems such as low degradation efficiency and high energy consumption. A novel cerium-aluminum composite catalyst (
i
-AlCeO
2
) was prepared via the sol-gel method
and combined with dielectric barrier discharge (DBD) plasma technology to achieve efficient degradation of SF
6
. The physicochemical properties of the catalyst were characterized
and key parameters such as
n
(Al)/
n
(Ce) (
i
= 7/1
5/3
3/5 and 1/7) in the catalyst and the DBD input p
ower (40 W to 60 W) were optimized. Meanwhile
the transformation mechanism of Ce
3+
to Ce
4+
and the generation of oxygen vacancies on the catalyst surface under plasma excitation were analyzed based on XPS characterization. The results show that adjusting
n
(Al)/
n
(Ce) and input power could significantly enhance the degradation efficiency of SF
6
. Under the conditions of using Ar as the carrier gas
the SF
6
volume fraction of 1.53% and the input power of 50 W
the 3/5-AlCeO
2
catalyst exhibits excellent catalytic degradation performance
achieving a degradation efficiency of 99.8% and a energy yield of 28.99 g/(kW·h)
and the degradation efficiency remains stable over 99% after continuous operation about 40 min. Analysis reveals that the 3/5-AlCeO
2
possesses a large pore size of 13.08 nm and abundant surface oxygen
which in synergy with the pre-dissociation effect of high-energy electrons generated by DBD on SF
6
promotes the Ce
3+
-mediated attack of oxygen radicals (·O) on S—F bonds
thereby achieving deep degradation of SF
6
. This study aims to overcome the technical bottleneck of efficient and low-energy SF
6
degradation through multi-scale catalyst design and plasma synergistic excitation strategy
and to clarify the structure-activity relationship and reaction mechanism
providing a reference for related research.
FANG X K , HU X , JANSSENS-MAENHOUT G , et al . Sulfur hexafluoride (SF 6 ) emission estimates for China: An inventory for 1990—2010 and a projection to 2020 [J ] . Environmental Science & Technology , 2013 , 47 ( 8 ): 3848 - 3855 .
ZHAO B W , XU Q , LU J Y . Recent advances in abatement of methane and sulfur hexafluoride non-CO 2 greenhouse gases under dual-carbon target [J ] . Science of the Total Environment , 2024 , 948 : 174992 .
杨志强 , 曾纪珺 , 马义丁 , 等 . 六氟化硫替代气体的研究现状及未来发展趋势 [J ] . 化工进展 , 2023 , 42 ( 8 ): 4093 - 4107 .
YANG Z Q , ZENG J J , MA Y D , et al . Research status and future trend of sulfur hexafluoride alternatives [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 8 ): 4093 - 4107 .
OWENS J , XIAO A , BONK J , et al . Recent development of two alternative gases to SF 6 for high voltage electrical power applications [J ] . Energies , 2021 , 14 ( 16 ): 5051 .
KIEFFEL Y , IRWIN T , PONCHON P , et al . Green gas to replace SF 6 in electrical grids [J ] . IEEE Power and Energy Magazine , 2016 , 14 ( 2 ): 32 - 39 .
PREVE C , PICCOZ D , MALADEN R . Application of HFO1234ZEE in MV switchgear AS SF 6 alternative gas [J ] . CIRED , 2017 , 2017( 1 ): 42 - 45 .
陈奕群 . SF 6 气体现场回收处理技术研究 [J ] . 中国设备工程 , 2019 , ( 10 ): 174 - 175 .
CHENG Y Q . Research on on-site recovery and treatment technology of SF 6 gas [J ] . China Plant Engineering , 2019 , ( 10 ): 174 - 175 .
AHLEN M , ZHOU Y , HEDBOM D , et al . Efficient SF 6 capture and separation in robust gallium- and vanadium-based metal-organic frameworks [J ] . Journal of Materials Chemistry A , 2023 , 11 ( 48 ): 26435 - 26441 .
HU Y Q , WANG L Y , NAN R H , et al . Pore engineering in cost-effective and stable Al-MOFs for efficient capture of the greenhouse gas SF 6 [J ] . Chemical Engineering Journal , 2023 , 471 : 144851 .
沈燕 . 强温室气体SF 6 、SF 5 CF 3 与CF 4 的等离子体降解与光降解过程的研究 [D ] . 上海 : 复旦大学 , 2009 .
SHENG Y . Research on the plasma degradation and photodegradation processes of strong greenhouse gases SF 6 , SF 5 CF 3 and CF 4 [D ] . Shanghai : Fudan University , 2009 .
崔兆仑 , 郝艳捧 , 阳林 , 等 . SF 6 废气无害化降解研究综述 [J ] . 中国电机工程学报 , 2023 , 43 ( 19 ): 7720 - 7737 .
CUI Z L , HAO Y P , YANG L , et al . Review on harmless abatement of SF 6 waste gas [J ] . Proceedings of the CSEE , 2023 , 43 ( 19 ): 7720 - 7737 .
PARTHIBAN A , GOPAL A A R , SIWAYANAN P , et al . Disposal methods, health effects and emission regulations for sulfur hexafluoride and its by-products [J ] . Journal of Hazardous Materials , 2021 , 417 : 126107 .
王放放 , 张杰 , 马京香 , 等 . 羟基磷灰石降解强温室气体SF 6 实验与机理分析 [J ] . 化学工程 , 2024 , 52 ( 11 ): 9 - 14 .
WANG F F , ZHANG J , MA J X , et al . Experimental and mechanism analysis of hydroxyapatite degradation of potent greenhouse gas SF 6 [D ] . Chemical Engineering (China) , 2024 , 52 ( 11 ): 9 - 14 .
KASHIWAGI D , TAKAI A , TAKUBO T , et al . Metal phosphate catalysts effective for degradation of sulfur hexafluoride [J ] . Industrial & Engineering Chemistry Research , 2009 , 48 ( 2 ): 632 - 640 .
熊浩 , 陈铁 , 刘航 , 等 . 基于磷酸盐 的热催化降解SF 6 废气研究 [J ] . 高压电器 , 2021 , 57 ( 3 ): 180 - 185 .
XIONG H , CHEN T , LIU H , et al . Study on thermal catalytic degradation of SF 6 waste gas based on phosphate [J ] . High Voltage Apparatus , 2021 , 57 ( 3 ): 180 - 185 .
张晓星 , 王毅 , 田双双 , 等 . O 2 对CePO 4 热催化降解SF 6 废气的影响 [J ] . 高压电器 , 2021 , 57 ( 3 ): 180 - 185 .
ZHANG X X , WANG Y , TIAN S S , et al . Effect of O 2 on thermocatalytic degradation of SF 6 by CePO 4 [J ] . High Voltage Engineering , 2021 , 57 ( 3 ): 180 - 185 .
高朋 . 填充材料对介质阻挡放电降解SF 6 影响机理的研究 [D ] . 武汉 : 湖北工业大学 , 2024 .
GAO P . Study on the influence mechanism of filling materials on SF 6 degradation by dielectric barrier discharge [D ] . Wuhan : Hubei University of Technology , 2024 .
李亚龙 , 杨照迪 , 万昆 , 等 . 外加O 2 和H 2 O对脉冲DBD降解SF 6 的影响 [J ] . 高电压技术 , 2024 , 50 ( 11 ): 5219 - 5227 .
LI Y L , YANG Z D , WANG K , et al . Effect of O 2 and H 2 O on the degradation of SF 6 by pulsed DBD [J ] . High Voltage Engineering , 2024 , 50 ( 11 ): 5219 - 5227 .
ZHUANG Q , CLEMENTS B , MCFARLAN A , et al . Decomposition of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF 6 ) using a dielectric barrier discharge (DBD) plasma [J ] . Canadian Journal of Chemical Engineering , 2014 , 92 ( 1 ): 32 - 35 .
张晓星 , 李亚龙 , 胡雄雄 , 等 . 基于TiO 2 表面紫外光催化降解高浓度SF 6 的实验与仿真研究 [J ] . 高电压技术 , 2019 , 45 ( 7 ): 2212 - 2218 .
ZHANG X X , LI Y L , HU X X , et al . Simulation and experimental study on degradation of high concentration SF 6 based on ultraviolet photocatalysis principle of titanium dioxide surface [J ] . High Voltage Engineering , 2019 , 45 ( 7 ): 2212 - 2218 .
LI Y L , ZHANG X X , CUI Z L , et al . Experiment of effect of ammonia on degradation of sulfur hexafluoride by dielectric barrier discharge [J ] . Transactions of China Electrotechnical Society , 2019 , 34 ( 24 ): 5262 - 5269 .
KIM D H , MOK Y S . Decomposition of sulfur hexafluoride by using a nonthermal plasma-assisted catalytic process [J ] . Journal of the Korean Physical Society , 2011 , 59 ( 6 ): 3437 - 3441 .
ZHANG X X , ZHANG G Z , WU Y Q , et al . Synergistic treatment of SF 6 by dielectric barrier discharge/ γ -Al 2 O 3 catalysis [J ] . AIP Advances , 2018 , 8 ( 12 ): 125109 .
PARK N K , PARK H G , LEE T J , et al . Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF 6 [J ] . Catalysis Today , 2012 , 185 ( 1 ): 247 - 252 .
TROVARELLI A . Catalytic properties of ceria and CeO 2 -containing materials [J ] . Catalysis Reviews Science and Engineering , 1996 , 38 ( 4 ): 439 - 520 .
SANCHEZ M G , GAZQUEZ J L . Oxygen vacancy model in strong metal-support interaction [J ] . Journal of Catalysis , 1987 , 104 ( 1 ): 120 - 135 .
ZHANG X X , XIAO H Y , HU X X , et al . Effects of background gas on sulfur hexafluoride removal by atmospheric dielectric barrier discharge plasma [J ] . AIP Advances , 2016 , 6 ( 11 ): 115005 .
胡雄雄 . 介质阻挡放电等离子体降解六氟化硫气体的实验研究 [D ] . 重庆 : 重庆大学 , 2018 .
HU X X . Experimental study on degradation of sulfur hexafluoride gas by dielectric barrier discharge plasma [D ] . Chongqing : Chongqing University , 2018 .
张晓星 , 胡雄雄 , 肖焓艳 , 等 . 不同背景气体对介质阻挡放电降解SF 6 气体影响的实验研究 [J ] . 中国电机工程学报 , 2018 , 38 ( 3 ): 937 - 946 .
ZHANG X X , HU X X , XIAO H Y , et al . Experimental study on the effect of different dilution gases to the degradation of SF 6 gas by dielectric barrier discharge [J ] . Proceedings of the CSEE , 2018 , 38 ( 3 ): 937 - 946 .
ZHAO B W , XU Q , LU J Y . Recent advances in abatement of methane and sulfur hexafluoride non-CO 2 greenhouse gases under dual-carbon target [J ] . Science of the Total Environment , 2024 , 948 : 174992 .
DERVOS C T , VASSILIOU P . Sulfur hexafluoride (SF 6 ): Global environmental effects and toxic byproduct formation [J ] . Journal of the Air & Waste Management Association , 2000 , 50 ( 1 ): 137 - 141 .
崔嘉琦 . 等离子体协同石墨烯/二氧化钛降解水中苯酚的研究 [D ] . 武汉 : 武汉理工大学 , 2020 .
CUI J Q . Synergistic degradation of phenol in water by plasma combined with RGO-TiO 2 [D ] . Wuhan : Wuhan University of Technology , 2020 .
DĘBEK R , AZZOLINA-JURY F , TRAVERT A , et al . A review on plasma-catalytic methanation of carbon dioxide—Looking for an efficient catalyst [J ] . Renewable & Sustainable Energy Reviews , 2019 , 116 : 109427 .
YUZHAKOVA T , RAKIĆ V , GUIMON C , et al . Preparation and char acterization of Me 2 O 3 -CeO 2 (Me = B, Al, Ga, In)mixed-oxide catalysts [J ] . Chemistry of Materials , 2007 , 19 ( 12 ): 2970 - 2981 .
SASIKALA R , SUDARSAN V , KULSHRESHTHA S K . 27 Al NMR studies of Ce-Al mixed oxides: Origin of 40 ppm peak [J ] . Journal of Solid State Chemistry , 2002 , 169 ( 1 ): 113 - 117 .
SUN S M , CHU W L , YANG W S , et al . Ce-Al mixed oxide with high thermal stability for diesel soot combustion [J ] . Chinese Journal of Catalysis , 2009 , 30 ( 7 ): 685 - 689 .
BADOGA S , DALAI A K , ADJAYE J , et al . Combined effects of EDTA and heteroatoms (Ti, Zr, and Al) on catalytic activity of SBA-15 supported NiMo catalyst for hydrotreating of heavy gas oil [J ] . Industrial & Engineering Chemistry Research , 2014 , 53 ( 6 ): 2137 - 2156 .
李广慈 , 赵会吉 , 赵瑞玉 , 等 . 不同扩孔方法对催化剂载体氧化铝孔结构的影响 [J ] . 石油炼制与化工 , 2010 , 41 ( 1 ): 49 - 54 .
LI G C , ZHAO H J , ZHAO R Y , et al . Effects of various pore-enlarging methods on the pore structure of alumina catalyst support [J ] . Petroleum Processing and Petrochemicals , 2010 , 41 ( 1 ): 49 - 54 .
BADOGA S , SHARMA R V , DALAI A K , et al . Synthesis and characterization of mesoporous aluminas with different pore sizes: Application in NiMo supported catalyst for hydrotreating of heavy gas oil [J ] . Applied Catalysis A: General , 2015 , 489 : 86 - 97 .
ABSI-HALABI M , STANISLAUS A , AL-MUGHNI T , et al . Hydroprocessing of vacuum residues: Relation between catalyst activity, deactivation and pore size distribution [J ] . Fuel , 1995 , 74 ( 8 ): 1211 - 1215 .
张晓星 , 肖焓艳 , 黄杨珏 . 低温等离子体处理SF 6 废气综述 [J ] . 电工技术学报 , 2016 , 31 ( 24 ): 16 - 24 .
ZHANG X X , XIAO H Y , HUANG Y J . A review of degradation of SF 6 waste by low temperature plasma [J ] . Transactions of China Electrotechnical Society , 2016 , 31 ( 24 ): 16 - 24 .
沈燕 , 黄丽 , 张仁熙 , 等 . 介质阻挡放电降解SF 6 的研究 [J ] . 环境化学 , 2007 , 26 ( 3 ): 275 - 279 .
SHEN Y , HUANG L , ZHANG R X , et al . Decom-position of SF 6 by dielectric barrier discharge [J ] . Environmental Chemistry , 2007 , 26 ( 3 ): 275 - 279 .
SHIH M L , LEE W J , TSAI C H , et al . Decomposition of SF 6 in an RF plasma environment [J ] . Journal of the Air & Waste Management Association , 2002 , 52 ( 11 ): 1274 - 1280 .
胡金海 . Fe基复合材料的制备及其SF 6 热降解性能的研究 [D ] . 上海 : 上海师范大学 , 2021 .
HU J H . Preparation of Fe-based composite materials and study on their SF 6 thermal degradation performance [D ] . Shanghai : Shanghai Normal University , 2021 .
ZHANG X X , CUI Z L , LI Y L , et al . Abatement of SF 6 in the presence of NH 3 by dielectric barrierdischarge plasma [J ] . Journal of Hazardous Materials , 2018 , 360 : 341 - 348 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533
