1.南昌大学 化学化工学院,江西 南昌 330031
2.南通大学 纺织服装学院,江苏 南通 226019
梁惠民(1997—),硕士研究生,研究方向为工业催化,E-mail: 402800220140@email.ncu.edu.cn。
叶闰平(1990—),博士,教授,研究方向为多相催化,E-mail: rye@ncu.edu.cn;
冯刚(1982—),博士,教授,研究方向为工业催化,E-mail: fenggang@ncu.edu.cn。
收稿:2025-02-16,
修回:2025-03-12,
纸质出版:2025-11-25
移动端阅览
梁惠民,张荣斌,叶闰平等.介质阻挡放电等离子体催化甲烷无氧偶联的影响因素优化研究[J].低碳化学与化工,2025,50(11):1-12.
LIANG Huimin,ZHANG Rongbin,YE Runping,et al.Study on optimization of influencing factors of anaerobic methane coupling catalyzed by dielectric barrier discharge plasma[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):1-12.
梁惠民,张荣斌,叶闰平等.介质阻挡放电等离子体催化甲烷无氧偶联的影响因素优化研究[J].低碳化学与化工,2025,50(11):1-12. DOI: 10.12434/j.issn.2097-2547.20250057.
LIANG Huimin,ZHANG Rongbin,YE Runping,et al.Study on optimization of influencing factors of anaerobic methane coupling catalyzed by dielectric barrier discharge plasma[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):1-12. DOI: 10.12434/j.issn.2097-2547.20250057.
介质阻挡放电(DBD)等离子体催化甲烷(CH
4
)无氧偶联是实现CH
4
高效转化制备高附加值碳氢化合物(如C
2
烃类)的重要途径,但其反应效率受到多因素影响。通过设计系列实验,系统探究了放电功率、温度、气体总流速、辅助气种类和含量(体积分数)等关键参数对CH
4
转化率及C
2
烃类选择性的影响规律。实验结果表明,气体总流速是调控反应物停留时间的关键参数,气体总流速增大时,气体在等离子体区的停留时间缩短,导致CH
4
转化率减小。辅助气种类对反应路径具有显著调控作用,N
2
作为辅助气时,通过激发高能电子使CH
4
转化率显著增大,C
2
烃类产物选择性最大可达40%,而H
2
作为辅助气时,CH
4
转化率减小,但通过氢自由基介导的加氢反应使C
2
H
6
选择性增大至90%以上。电极表面微观形貌直接影响放电特性,0.10 mol/L赖氨酸溶液处理电极表面1.0 d后,CH
4
转化率相比未处理明显增大。上述多参数协同优化机制将为等离子体催化CH
4
转化反应器
的工程放大提供关键设计准则,深化研究人员对等离子体催化体系作用机制的理论认知。
Anaerobic methane (CH
4
) coupling catalyzed by dielectric barrier discharge (DBD) plasma is a significant pathway for the efficient conversion of CH
4
into high-value hydrocarbons (such as C
2
hydrocarbons). However
its reaction efficiency is influenced by multiple factors. Through a series of experiments
the effects of key parameters such as discharge power
temperatures
total gas flow rates
auxiliary gas types and contents (volume fraction
the same below) on CH
4
conversion rates and C
2
hydrocarbon selectivities were systematically investigated. The experimental results indicate that total gas flow rate is a critical parameter for controlling the residence time of reactants. When the total gas flow rate increases
the average residence time of the gas in the plasma region shortens
leading to a decrease in CH
4
conversion rate. Auxiliary gas types significantly regulate the reaction pathway. When N
2
is used as an auxiliary gas
the CH
4
conversion rate is significantly increased by exciting high-energy electrons
and the C
2
hydrocarbon selectivity can reach up to 40%. When H
2
is used as an auxiliary gas
the CH
4
conversion rate decreases
but the C
2
H
6
selectivity increases to more than 90% due to hydrogen radical-mediated hydrogenation reactions. The microscopic morphology of the electrode surface directly affects discharge characteristics. After treating the electrode surface with the 0.10 mol/L lysine solution for one day
the CH
4
conversion rate significantly increases compared to untreated electrodes. The synergistic optimization mechanism of these multiple parameters will provide critical design guidelines for the scale-up of plasma-catalytic CH
4
conversion reactors and deepen the theoretical understanding of the mechanism in plasma-
catalytic systems.
LATIMER A A , ALJAMA H , KAKEKHANI A , et al . Mechanistic insights into heterogeneous methane activation [J ] . Physical Chemistry Chemical Physics , 2017 , 19 ( 5 ): 3575 - 3581 .
HAMMOND C , CONRAD S , HERMANS I . Oxidative methane upgrading [J ] . ChemSusChem , 2012 , 5 ( 9 ): 1668 - 1686 .
ELVIDGE C , ZHIZHIN M , BAUGH K , et al . Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data [J ] . Energies , 2015 , 9 ( 1 ): 14 .
ALVAREZ-GALVAN M C , MOTA N , OJEDA M , et al . Direct methane conversion routes to chemicals and fuels [J ] . Catalysis Today , 2011 , 171 ( 1 ): 15 - 23 .
张洪雁 , 杜双利 , 王雪峰 . 非贵金属氧化物甲烷催化燃烧催化剂的研究进展 [J ] . 天然气化工—C1化学与化工 , 2021 , 46 ( 2 ): 10 - 14 .
ZHANG H Y , DU S L , WANG X F . Research progress of non-noble metal catalysts for methane catalytic combustion [J ] . Natural Gas Chemical Industry , 2021 , 46 ( 2 ): 10 - 14 .
吴兴亮 , 吕凌辉 , 马清祥 , 等 . 甲烷二氧化碳重整镍基催化剂的研究进展 [J ] . 洁净煤技术 , 2021 , 27 ( 3 ): 129 - 137 .
WU X L , LV L H , MA Q X , et al . Research progress of nickel-based catalysts for carbon dioxide reforming of methane [J ] . Clean Coal Technology , 2021 , 27 ( 3 ): 129 - 137 .
CAI X J , HU Y H . Advances in catalytic conversion of methane and carbon dioxide to highly valuable products [J ] . Energy Science & Engineering , 2019 , 7 ( 1 ): 4 - 29 .
黄泽皑 , 周芸霄 , 张魁魁 , 等 . 甲烷裂解制氢和碳材料工艺研究进展 [J ] . 低碳化学与化工 , 2024 , 49 ( 9 ): 1 - 11 .
HUANG Z A , ZHOU Y X , ZHANG K K , et al . Research progress on methane pyrolysis process for hydrogen and carbon materials [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 9 ): 1 - 11 .
EGGART D , HUANG X , ZIMINA A , et al . Operando XAS study of Pt-doped CeO 2 for the nonoxidative conversion of methane [J ] . ACS Catalysis , 2022 , 12 ( 7 ): 3897 - 3908 .
FENG J Y , SUN X , LI Z , et al . Plasma‐assisted reforming of methane [J ] . Advanced Science , 2022 , 9 ( 34 ): 2203221 .
BURGER C M , ZHANG A J , XU Y J , et al . Plasma-assisted chemical-looping combustion: Low-temperature methane and ethylene oxidation with nickel oxide [J ] . The Journal of Physical Chemistry A , 2023 , 127 ( 3 ): 789 - 798 .
STANLEY K , KELLY S , SULLIVAN J A . Effect of Ni NP morphology on catalyst performance in non-thermal plasma-assisted dry reforming of methane [J ] . Applied Catalysis B: Environmental , 2023 , 328 : 122533 .
朱红威 , 邵菊芳 , 陶秀祥 . 煤矿甲烷生物转化生产高附加值产物的研究 [J ] . 洁净煤技术 , 2013 , 19 ( 2 ): 47 - 54 .
ZHU H W , SHAO J F , TAO X X . Bioconversion of coal mine methane for high value-added products [J ] . Clean Coal Technology , 2013 , 19 ( 2 ): 47 - 54 .
LIETZ A M , KUSHNER M J . Air plasma treatment of liquid covered tissue: Long timescale chemistry [J ] . Journal of Physics D: Applied Physics , 2016 , 49 ( 42 ): 425204 .
SHAARI N , KAMARUDIN S K . Chitosan and alginate types of bio-membrane in fuel cell application: An overview [J ] . Journal of Power Sources , 2015 , 289 : 71 - 80 .
殷冬冬 , 张熙 , 周隆昌 . DBD等离子体辅助甲烷无氧偶联技术研究进展 [J ] . 低碳化学与化工 , 2025 , 50 ( 2 ): 15 - 24 .
YIN D D , ZHANG X , ZHOU L C . Research progress on DBD plasma-assisted non-oxidative coupling of methane technology [J ] . Low-Carbon Chemistry and Chemical Engineering , 2025 , 50 ( 2 ): 15 - 24 .
SNOECKX R , ZENG Y X , TU X , et al . Plasma-based dry reforming: Improving the conversion and energy efficiency in a dielectric barrier discharge [J ] . RSC Advances , 2015 , 5 ( 38 ): 29799 .
MOUSAVI S M A , PIAVIS W , TURN S . Reforming of biogas using a non-thermal, gliding-arc, plasma in reverse vortex flow and fate of hydrogen sulfide contaminants [J ] . Fuel Process Technology , 2019 , 193 : 378 - 391 .
SHI C , WANG S , GE X , et al . A review of different catalytic systems for dry reforming of methane: Conventional catalysis-alone and plasma-catalytic system [J ] . Journal of CO 2 Utilization , 2021 , 46 : 101462 .
KHOJA A H , TAHIR M , AMIN N A S . Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane [J ] . Energy Conversion and Management , 2019 , 183 : 529 - 560 .
WANG C , LI D N , LU Z S , et al . Synthesis of carbon nanoparticles in a non-thermal plasma process [J ] . Chemical Engineering Science , 2020 , 227 : 115921 .
LEE M Y , NAM J S , SEO J H . Synthesis of Ni-CeO 2 catalyst for the partial oxidation of methane using RF thermal plasma [J ] . Chinese Journal of Catalysis , 2016 , 37 ( 5 ): 743 - 749 .
CHEN H H , MU Y B , XU S S , et al . Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry [J ] . Chinese Journal of Chemical Engineering , 2020 , 28 ( 8 ): 2010 - 2021 .
ANDERSEN J A , CHRISTENSEN J M , ØSTBERG M , et al . Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor [J ] . Chemical Engineering Journal , 2020 , 397 : 125519 .
BI W F , TANG Y , LI X M , et al . One-step direct conversion of methane to methanol with water in non-thermal plasma [J ] . Communications Chemistry , 2022 , 5 : 124 .
GHANBARI M , BINAZADEH M , ZAFARNAK S , et al . Hydrogen production via catalytic pulsed plasma conversion of methane: Effect of Ni-K 2 O/Al 2 O 3 loading, applied voltage, and argon flow rate [J ] . International Journal of Hydrogen Energy , 2020 , 45 ( 27 ): 13899 - 13910 .
KHALIFEH O , TAGHVAEI H , MOSALLANEJAD A , et al . Extra pure hydrogen production through methane decomposition using nanosecond pulsed plasma and Pt-Re catalyst [J ] . Chemical Engineering Journal , 2016 , 294 : 132 - 145 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
蜀公网安备51012202001533
