浏览全部资源
扫码关注微信
江南大学 化学与材料工程学院,江苏 无锡 214122
张东健(1999—),硕士研究生,研究方向为CO2加氢机理,E-mail:sjkcbl@163.com。
刘 冰(1988—),博士,副教授,研究方向为理论计算催化,E-mail:liubing@jiangnan.edu.cn;
刘小浩(1976—),博士,教授,研究方向为合成气催化转化,E-mail:liuxh@jiangnan.edu.cn。
收稿日期:2025-01-27,
修回日期:2025-03-12,
纸质出版日期:2025-05-25
移动端阅览
张东健,查雅君,刘冰等.Pd2/CeO2上OV和H2O对催化CO2加氢反应影响的理论计算研究[J].低碳化学与化工,2025,50(5):11-17.
ZHANG Dongjian,ZHA Yajun,LIU Bing,et al.Theoretical calculation study on effects of OV and H2O on CO2 hydrogenation over Pd2/CeO2[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(5):11-17.
张东健,查雅君,刘冰等.Pd2/CeO2上OV和H2O对催化CO2加氢反应影响的理论计算研究[J].低碳化学与化工,2025,50(5):11-17. DOI: 10.12434/j.issn.2097-2547.20250044.
ZHANG Dongjian,ZHA Yajun,LIU Bing,et al.Theoretical calculation study on effects of OV and H2O on CO2 hydrogenation over Pd2/CeO2[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(5):11-17. DOI: 10.12434/j.issn.2097-2547.20250044.
CO
2
加氢生成乙醇及其他高级产物是实现CO
2
资源化利用的重要途径之一。Pd
2
/CeO
2
催化剂是CO
2
加氢制乙醇的理想催化剂之一。利用模拟方法可以更直观的表征其反应过程。采用密度泛函理论(DFT)计算方法,研究分析了氧空位(O
V
)和H
2
O对Pd
2
/CeO
2
催化剂上CO
2
加氢反应过程的影响。结果表明,相较于洁净催化剂表面,O
V
促进了CO
2
吸附和活化。此外,O
V
还改变了载体与负载Pd之间的电子状态,使得Pd能够向C物种提供更多电子,有利于后续C—O键断裂及C—C键偶联反应进行。然而,当催化剂表面存在H
2
O时,由于O物种的电负性较高,会与CO
2
及其衍生物种产生电子竞争,导致C物种电子密度降低,不利于C—O键解离及C—C键偶联,从而提高了生成乙醇的反应能垒。
CO
2
hydrogenation to produce ethanol and other advanced products is one of the important ways to realize the resource utilization of CO
2
. Pd
2
/CeO
2
catalyst is one of the ideal catalysts for CO
2
hydrogenation to ethanol. The simulation methods can provide a more intuitive representation of the reaction process. The influence o
f oxygen vacancy (O
V
) and H
2
O on the CO
2
hydrogenation process on Pd
2
/CeO
2
catalyst was studied and analyzed by density functional theory (DFT). The results show that compared to clean catalyst surfaces
O
V
promotes CO
2
adsorption and activation. In addition
O
V
also changes the electronic state between the support and the supported Pd
allowing Pd to provide more electrons to the C species
which is beneficial for subsequent C—O bond cleavage and C—C bond coupling reactions. However
when H
2
O is present on the surface of the catalyst
due to the high electronegativity of O species and H
2
O competes with CO
2
and its derivatives for electrons
resulting in a decrease in the electron density of C species
which is not conducive to the cleavage of C—O bonds and the coupling of C—C bonds
thereby increasing the reaction energy barriers for ethanol generation.
WANG L X , GUAN E J , WANG Y Q , et al . Silica accelerates the selective hydrogenation of CO 2 to methanol on cobalt catalysts [J ] . Nature Communications , 2020 , 11 ( 1 ): 1033 .
YAO B Z , XIAO T C , MAKGAE O A , et al . Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst [J ] . Nature Communications , 2020 , 11 ( 1 ): 6395 .
SHAO X Z , YANG X F , XU J M , et al . Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO 2 to formate [J ] . Chem , 2019 , 5 ( 3 ): 693 - 705 .
LI P S , BI J H , LIU J Y , et al . In situ dual doping for constructing efficient CO 2 -to-methanol electrocatalysts [J ] . Nature Communications , 2022 , 13 ( 1 ): 1965 .
DING L P , SHI T T , GU J , et al . CO 2 hydrogenation to ethanol over Cu@Na-Beta [J ] . Chem , 2020 , 6 ( 10 ): 2673 - 2689 .
FURUKAWA T , ISHIZU K . Synthesis and characterization of poly(ethylene oxide)star polymers possessing a tertiary amino group at each arm end by organized polymerization using macromonomers [J ] . Journal of Colloid and Interface Science , 2002 , 253 ( 2 ): 465 - 469 .
SKIBA E A , BAIBAKOVA O V , BUDAEVA V V , et al . Pilot technology of ethanol production from oat hulls for subsequent conversion to ethylene [J ] . Chemical Engineering Journal , 2017 , 329 : 178 - 186 .
RORRER J E , TOSTE F D , BELL A T . Mechanism and kinetics of isobutene formation from ethanol and acetone over Zn x Zr y O z [J ] . ACS Catalysis , 2019 , 9 ( 12 ): 10588 - 10604 .
LUCKY C , WANG T B , SCHREIER M . Electrochemical ethylene oxide synthesis from ethanol [J ] . ACS Energy Letters , 2022 , 7 ( 4 ): 1316 - 1321 .
CHEN T , XU S , ZHAO T T , et al . Accelerating ethanol complete electrooxidation via introducing ethylene as the precursor for the C—C bond splitting [J ] . Angewandte Chemie International Edition , 2023 , 62 ( 38 ): e202308057 .
ZHOU Y H , LI S Y , SUN X Y , et al . Preparation of novel magnetic ethylene glycol dimethacrylate-based molecularly imprinted polymer for rapid adsorption of phthalate esters from ethanol aqueous solution [J ] . Environmental Pollution , 2024 , 361 : 124891 .
雷昊凡 , 周涛 , 叶勇杰 , 等 . 金属-CeO 2 相互作用指导下的催化结构设计与调控 [J/OL ] . 中国稀土学报 : 1 - 27 [ 2025-03-28 ] .
LEI H F , ZHOU T , YE Y J , et al . Design and regulation of catalytic structures under the guidance of metal-CeO 2 interaction [J/OL ] . Journal of the Chinese Society of Rare Earths : 1 - 27 [ 2025-03-28 ] .
张迎 , 朱文杰 , 张黎明 , 等 . CeO 2 中氧空位形成、表征及其作用机制研究进展 [J ] . 中国稀土学报 , 2022 , 40 ( 1 ): 14 - 23 .
ZHANG Y , ZHU W J , ZHANG L M , et al . Research progress on formation, characterization and mechanismof oxygen vacancies in cerium oxide [J ] . Journal of the Chinese Society of Rare Earths , 2022 , 40 ( 1 ): 14 - 23 .
HUANG Y C , LONG B , TANG M N , et al . Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO 2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation [J ] . Applied Catalysis B: Environmental , 2016 , 181 : 779 - 787 .
XIE J , XI Y J , GAO W S , et al . Hydrogenolysis of lignin model compounds on Ni nanoparticles surrounding the oxygen vacancy of CeO 2 [J ] . ACS Catalysis , 2023 , 13 ( 14 ): 9577 - 9587 .
XU D Y , WU P P , YANG B . Essential role of water in the autocatalysis behavior of methanol synthesis from CO 2 hydrogenation on Cu: A combined DFT and microkinetic modeling study [J ] . The Journal of Physical Chemistry C , 2019 , 123 ( 14 ): 8959 - 8966 .
WU W L , WANG Y N , LUO L , et al . CO 2 hydrogenation over copper/ZnO single-atom catalysts: Water-promoted transient synthesis of methanol [J ] . Angewandte Chemie International Edition , 2022 , 61 ( 48 ): e202213024 .
WANG M R , ZHANG G H , WANG H , et al . Understanding and tuning the effects of H 2 O on catalytic CO and CO 2 hydrogenation [J ] . Chemical Reviews , 2024 , 124 ( 21 ): 12006 - 12085 .
CHEN J , ZHA Y J , LIU B , et al . Rationally designed water enriched nano reactor for stable CO 2 hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites [J ] . ACS Catalysis , 2023 , 13 ( 10 ): 7110 - 7121 .
KRESSE G , FURTHMÜLLER J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J ] . Computational Materials Science , 1996 , 6 ( 1 ): 15 - 50 .
KRESSE G , FURTHMÜLLER J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J ] . Physical Review B , 1996 , 54 ( 16 ): 11169 .
BLÖCHL P E . Projector augmented-wave method [J ] . Physical Review B , 1994 , 50 ( 24 ): 17953 .
PERDEW J P , BURKE K , ERNZERHOF M . Generalized gradient approximation made simple [J ] . Physical Review Letters , 1996 , 77 ( 18 ): 3865 .
JIANG F , WANG S S , LIU B , et al . Insights into the influence of CeO 2 crystal facet on CO 2 hydrogenation to methanol over Pd/CeO 2 catalysts [J ] . ACS Catalysis , 2020 , 10 ( 19 ): 11493 - 11509 .
LIU B , LIU J , XIN L , et al . Unraveling reactivity descriptors and structure sensitivity in low-temperature NH 3 -SCR reaction over CeTiO x catalysts: A combined computational and experimental study [J ] . ACS Catalysis , 2021 , 11 ( 13 ): 7613 - 7636 .
GRIMME S , ANTONY J , EHRLICH S , et al . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J ] . The Journal of Chemical Physics , 2010 , 132 ( 15 ): 154104 .
HENKELMAN G , UBERUAGA B P , JÓNSSON H . A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J ] . The Journal of Chemical Physics , 2000 , 113 ( 22 ): 9901 - 9904 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构