浏览全部资源
扫码关注微信
1.西南石油大学 油气藏地质及开发工程全国重点实验室,四川 成都 610500
2.西南石油大学 新能源与材料学院,四川 成都 610500
3.西南化工研究设计院有限公司 多孔材料与分离转化全国重点实验室,国家碳一化学工程技术研究中心,四川 成都 610225
张荀(2001—),硕士研究生,研究方向为天然气绿色高值利用,E-mail:xunzzik@163.com。
曹玥晗(1992—),博士,副研究员,研究方向为太阳能合成燃料,E-mail:yhcao419@163.com;
周莹(1981—),博士,教授,研究方向为油气资源与绿色能源,E-mail:yzhou@swpu.edu.cn。
收稿日期:2025-01-21,
修回日期:2025-02-17,
纸质出版日期:2025-08-25
移动端阅览
张荀,余旺,曹玥晗等.太阳能驱动天然气转化制化学品研究进展[J].低碳化学与化工,2025,50(8):67-78.
ZHANG Xun,YU Wang,CAO Yuehan,et al.Research progress on solar-driven conversion of natural gas to chemicals[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):67-78.
张荀,余旺,曹玥晗等.太阳能驱动天然气转化制化学品研究进展[J].低碳化学与化工,2025,50(8):67-78. DOI: 10.12434/j.issn.2097-2547.20250035.
ZHANG Xun,YU Wang,CAO Yuehan,et al.Research progress on solar-driven conversion of natural gas to chemicals[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):67-78. DOI: 10.12434/j.issn.2097-2547.20250035.
在“双碳”目标推动下,能源结构正加速向清洁化、低碳化方向转型。相较于煤炭和石油,天然气具有较低的碳氢比,是最清洁的化石能源之一,广泛应用于制氢及高值含碳化学品的生产,在构建新型能源体系中发挥着关键作用。虽然目前工业广泛采用的天然气蒸汽重整制氢以及两段天然气制甲醇等技术成熟,但普遍存在工艺复杂、能耗高的问题,所导致的碳排放难以契合低碳发展的要求。太阳能因具有资源丰富、清洁低碳和可再生等优势,为天然气转化制化学品的低碳化发展提供了新的解决思路。一方面,可通过太阳能替代传统化石能源作为供能方式,降低生产过程中的碳排放量;另一方面,借助太阳能驱动的反应路径实现反应优化,有望简化传统工艺流程。综述了太阳能间接驱动与直接驱动天然气转化制化学品的最新研究进展,重点阐述了太阳能驱动天然气碳氢联产与太阳能直接驱动天然气转化制化学品等技术的原理与研究现状,并对催化材料与反应系统的设计提出了展望,同时指出太阳能未来亦可与其他新能源形式协同使用,可为天然气转化制化学品的绿色低碳转型提供参考。
Under the promotion of the “carbon peaking and carbon neutrality” goals
the energy structure is accelerating its transition towards cleaner and low-carbon alternatives. Compared with coal and oil
natural gas has a lower carbon-to-hydrogen ratio and is considered one of the cleanest fossil fuels. It plays a crucial role in building a new energy system and is widely applied in hydrogen production and the synthesis of high-value carbon-containing chemicals. Although industrially mature technologies such as steam methane reforming and two-stage natural gas-to-methanol synthesis are commonly used
they generally suffer from complex processes and high energy consumption
resulting in carbon emissions that fall short of low-carbon development requirements. Solar energy
characterized by its abundance
cleanliness
low-carbon nature and renewability
offers a novel pathway for the low-carbon development of natural gas-based chemical production. On one hand
solar energy can replace traditional fossil fuels as the energy source
thereby reducing carbon emissions during production. On the other hand
solar-driven reaction pathways can help optimize reactions and simplify traditional processes. Recent research progress on both indirect and direct solar-driven natural gas conversion to chemicals was reviewed
with a particular focus on the principles and current progress on solar-driven carbon-hydrogen co-production and solar-driven chemical production from natural gas. Prospects were also presented for the design of catalytic materials and reaction systems. Simultaneously
it is pointed out that solar energy can also be used in conjunction with other new energy forms in the future
which can provide aims to provide references for the green and low-carbon transformation of natural gas-based chemical production.
DUMMER N F , WILLOCK D J , HE Q , et al . Methane oxidation to methanol [J ] . Chemical Reviews , 2023 , 123 ( 9 ): 6359 - 6411 .
黎园 . 我国天然气化工产业发展现状及前景分析 [J ] . 低碳化学与化工 , 2024 , 49 ( 1 ): 105 - 112 .
LI Y . Analysis of current development status and prospects of China’s natural gas chemical industry [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 1 ): 105 - 112 .
李鹏阳 , 王改荣 , 张彩东 , 等 . CO 2 加氢制甲醇催化剂理化性质对催化性能影响研究进展 [J ] . 低碳化学与化工 , 2024 , 49 ( 11 ): 12 - 20 .
LI P Y , WANG G R , ZHANG C D , et al . Research progress on impact of physicochemical properties of catalysts on catalytic performances for CO 2 hydrogenation to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 11 ): 12 - 20 .
孙晨 , 赵昆峰 , 易志国 . 甲烷完全催化氧化研究进展 [J ] . 无机材料学报 , 2023 , 38 ( 11 ): 1245 - 1256 .
SUN C , ZHAO K F , YI Z G . Research progress in catalytic total oxidation of methane [J ] . Journal of Inorganic Materials , 2023 , 38 ( 11 ): 1245 - 1256 .
CHAN Y H , CHAN Z P , LOCK S S M , et al . Thermal pyrolysis conversion of methane to hydrogen (H 2 ): A review on process parameters, reaction kinetics and techno-economic analysis [J ] . Chinese Chemical Letters , 2024 , 35 ( 8 ): 109329 .
曹军文 , 张文强 , 李一枫 , 等 . 中国制氢技术的发展现状 [J ] . 化学进展 , 2021 , 33 ( 12 ): 2215 - 2244 .
CAO J W , ZHANG W Q , LI Y F , et al . Current status of hydrogen production in China [J ] . Progress in Chemistry , 2021 , 33 ( 12 ): 2215 - 2244 .
岳全鑫 , 郭瑞华 , 王瑞芬 , 等 . 3D核壳结构NiMoO 4 @CoFe-LDH纳米棒的高效析氧及全解水性能研究 [J ] . 无机材料学报 , 2024 , 39 ( 11 ): 1254 - 1266 .
YUE Q X , GUO R H , WANG R F , et al . 3D Core-shell structured NiMoO 4 @CoFe-LDH nanorods: Performance of efficient oxygen evolution reaction and overall water splitting [J ] . Journal of Inorganic Materials , 2024 , 39 ( 11 ): 1254 - 1266 .
林朝阳 , 张喜文 , 方向晨 , 等 . 甲烷低温活化制甲醇研究进展 [J ] . 化工进展 , 2012 , 31 ( 10 ): 2124 - 2129 .
LIN C Y , ZHANG X W , FANG X C , et al . Advances in research on low-temperature activation of methane to methano [J ] . Chemical Industry and Engineering Progree , 2012 , 31 ( 10 ): 2124 - 2129 .
YANG Z S , ZHANG Q Q , SONG H , et al . Partial oxidation of methane by photocatalysis [J ] . Chinese Chemical Letters , 2024 , 35 ( 1 ): 108418 .
GHAZVINI M , SADEGHZADEH M , AHMADI M H , et al . Geothermal energy use in hydrogen production: A review [J ] . International Journal of Energy Research , 2019 , 43 ( 14 ): 7823 - 7851 .
崔凯 . 甲烷催化裂解制氢研究现状 [J ] . 广州化工 , 2022 , 50 ( 14 ): 44 - 46 .
CUI K . Research status of hydrogen production from methane catalytic cracking [J ] . Guangzhou Chemical Industry , 2022 , 50 ( 14 ): 44 - 46 .
WEI T C , ZHOU J , AN X Q . Recent advances in single-atom catalysts (SACs) for photocatalytic applications [J ] . Materials Reports: Energy , 2024 , 4 ( 3 ): 100285 .
黄学敏 , 郭旭青 , 李飞 , 等 . 温和条件下甲烷直接催化制甲醇研究进展 [J ] . 天然气化工—C1化学与化工 , 2020 , 45 ( 4 ): 117 - 122 .
HUANG X M , GUO X Q , LI F , et al . Research progress in direct catalytic conversion of methane to methanol under mild conditions [J ] . Natural Gas Chemical Industry , 2020 , 45 ( 4 ): 117 - 122 .
LI Q , OUYANG Y X , LI H L , et al . Photocatalytic conversion of methane: Recent advancements and prospects [J ] . Angewandte Chemie International Edition , 2022 , 134 ( 2 ): e202108069 .
SONG H , MENG X G , WANG Z J , et al . Solar-energy-mediated methane conversion [J ] . Joule , 2019 , 3 ( 7 ): 1606 - 1636 .
曹勇 . 中美氢能产业发展现状与思考 [J ] . 石油石化绿色低碳 , 2019 , 4 ( 6 ): 1 - 6+19 .
CAO Y . A review on current situation of hydrogen energy industry in China and the United States [J ] . Green Petroleum & Petrochemicals , 2019 , 4 ( 6 ): 1 - 6+19 .
邱一苇 , 吉旭 , 朱文聪 , 等 . 面向新能源规模化消纳的绿氢化工技术研究现状与关键支撑技术展望 [J ] . 中国电机工程学报 , 2023 , 43 ( 18 ): 6934 - 6955 .
QIU Y W , JI X , ZHU W C , et al . Research status of green hydrogen-based chemical engineering technology and prospect of key supporting technologies for large-scale utilization of new energies [J ] . Proceedings of The CSEE , 2023 , 43 ( 18 ): 6934 - 6955 .
袁家海 , 牟琪林 , 许传博 , 等 . 基于系统动力学的中国绿氢产业发展政策仿真 [J ] . 中国人口·资源与环境 , 2023 , 33 ( 6 ): 49 - 58 .
YUAN J H , MOU Q L , XU C B , et al . Simulation study on the development policy of China’s green hydrogen industry based on system dynamics [J ] . Chinese Journal of Population, Resources and Environment , 2023 , 33 ( 6 ): 49 - 58 .
XIE J , JIANG Y H , LI S Y , et al . Stable photocatalytic coupling of methane to ethane with water vapor using TiO 2 supported ultralow loading AuPd nanoparticles [J ] . Acta Physico-Chimica Sinica , 2023 , 39 ( 10 ): 2306037 .
LI H Y , PEI W , YANG X W , et al . Pt overlayer for direct oxidation of CH 4 to CH 3 OH [J ] . Chinese Chemical Letters , 2023 , 34 ( 11 ): 108292 .
TIAN Y D , PIAO L Y , CHEN X B . Research progress on the photocatalytic activation of methane to methanol [J ] . Green Chemistry , 2021 , 23 ( 10 ): 3526 - 3541 .
刘倩倩 , 郭毅谦 , 靳志达 . 天然气水蒸气转化制氢装置模拟分析 [J ] . 山东化工 , 2024 , 53 ( 18 ): 222 - 224+229 .
LIU Q Q , GUO Y Q , JIN Z D . Analysis of natural gas steam reforming hydrogen production [J ] . Shandong Chemical Industry , 2024 , 53 ( 18 ): 222 - 224+229 .
邹才能 , 李建明 , 张茜 , 等 . 氢能工业现状、技术进展、挑战及前景 [J ] . 天然气工业 , 2022 , 42 ( 4 ): 1 - 20 .
ZOU C N , LI J M , ZHANG X , et al . Industrial status, technological progress, challenges and prospects of hydrogen energy [J ] . Natural Gas Industry , 2022 , 42 ( 4 ): 1 - 20 .
宋鹏飞 , 张超 , 王修康 , 等 . 小微型天然气制氢工艺与反应器技术研究进展 [J ] . 油气与新能源 , 2024 , 36 ( 3 ): 44 - 50 .
SONG P F , ZHANG C , WANG X K , et al . Innovation of small and micro-scale natural gas to hydrogen technology and reactor [J ] . Petroleum and New Energy , 2024 , 36 ( 3 ): 44 - 50 .
周青锋 , 陈润 . LNG动力船舶应用小型撬装天然气制氢技术综述 [J ] . 船舶标准化工程师 , 2024 , 57 ( 5 ): 60 - 67 .
ZHOU Q F , CHEN R . Overview of small scale skid mounted natural gas hydrogen production technology for LNG powered ship [J ] . Ship Standardization Engineer , 2024 , 57 ( 5 ): 60 - 67 .
宋鹏飞 , 张超 , 肖立 , 等 . 站内小型橇装天然气制氢技术及安全设计 [J ] . 油气与新能源 , 2023 , 35 ( 3 ): 48 - 53 .
SONG P F , ZHANG C , XIAO L , et al . Technology and safety design of on-site skid-mounted natural gas to hydrogen generator [J ] . Petroleum and New Energy , 2023 , 35 ( 3 ): 48 - 53 .
沈晓波 , 章雪凝 , 刘海峰 . 高压氢气泄漏相关安全问题研究与进展 [J ] . 化工学报 , 2021 , 72 ( 3 ): 1217 - 1229 .
SHEN X B , ZHANG X N , LIU H F . Research and progress on safety issues related to high-pressure hydrogen leakage [J ] . CIESC Journal , 2021 , 72 ( 3 ): 1217 - 1229 .
YAO C D , PAN W , YAO A R . Methanol fumigation in compression-ignition engines: A critical review of recent academic and technological developments [J ] . Fuel , 2017 , 209 ( 1 ): 713 - 732 .
JIANG X , NIE X W , GUO X W , et al . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J ] . Chemical Reviews , 2020 , 120 ( 15 ): 7984 - 8034 .
OLAH G A . Beyond oil and gas: The methanol economy [J ] . Angewandte Chemie International Edition , 2005 , 44 ( 18 ): 2636 - 2639 .
何磊 . 天然气制甲醇装置能耗分析与节能途径探讨 [D ] . 大连 : 大连理工大学 , 2013 .
HE L . Analysis of energy consumption and energy saving approach in a NG to methanol plant [D ] . Dalian : Dalian University of Technology , 2013 .
JIANG Y H , FAN Y Y , LI S Y , et al . Photocatalytic methane conversion: Insight Into the mechanism of C(sp 3 )—H bond activation [J ] . CCS Chemistry , 2023 , 5 ( 1 ): 30 - 54 .
杨孝林 , 李海建 , 吴宝鹏 , 等 . 天然气制甲醇的工艺分析及发展前景 [J ] . 化工管理 , 2018 , ( 25 ): 180 - 181 .
YANG X L , LI H J , WU B P , et al . Process analysis and development prospect of methanol production from natural gas [J ] . Chemical Engineering Management , 2018 , ( 25 ): 180 - 181 .
胡徐腾 . 天然气制乙烯技术进展及经济性分析 [J ] . 化工进展 , 2016 , 35 ( 6 ): 1733 - 1738 .
HU X T . Technology progress and economy analysis on natural gas to ethylene [J ] . Chemical Industry and Engineering Progress , 2016 , 35 ( 6 ): 1733 - 1738 .
蔡棋成 . CQ气田乙烷回收工艺技术研究 [D ] . 成都 : 西南石油大学 , 2018 .
CAI Q C . Research on ethane recovery technology in CQ gas field [D ] . Chengdu : Southwest Petroleum University , 2018 .
NIU Y H , CHI Z Y , LI M . Advancements in biomass gasification research utilizing iron-based oxygen carriers in chemical looping: A review [J ] . Materials Reports: Energy , 2024 , 4 ( 3 ): 100282 .
MIAO Z H , WU G Y , WANG Q , et al . Recent advances in graphitic carbon nitride-based photocatalysts for solar-driven hydrogen production [J ] . Materials Reports: Energy , 2023 , 3 ( 4 ): 100235 .
黄格省 , 李锦山 , 魏寿祥 , 等 . 化石原料制氢技术发展现状与经济性分析 [J ] . 化工进展 , 2019 , 38 ( 12 ): 5217 - 5224 .
HUANG G S , LI J S , WEI S X , et al . Status and economic analysis of hydrogen production technology from fossil raw materials [J ] . Chemical Industry and Engineering Progress , 2019 , 38 ( 12 ): 5217 - 5224 .
王彬 , 郭轲 , 邵煜 , 等 . 太阳能甲烷重整制氢研究进展 [J ] . 洁净煤技术 , 2024 , 30 ( 9 ): 1 - 25 .
WANG B , GUO K , SHAO Y , et al . A review on solar methane reforming for hydrogen production [J ] . Clean Coal Technology , 2024 , 30 ( 9 ): 1 - 25 .
王鹤臻 , 张晶 , 王娟 , 等 . 甲烷自热重整催化剂的研究进展 [J ] . 现代化工 , 2021 , 41 ( 3 ): 53 - 56+62 .
WANG H Z , ZHANG J , WANG J , et al . A review of research on catalyst for autothermal reforming of methane [J ] . Modern Chemical Industry , 2021 , 41 ( 3 ): 53 - 56+62 .
梁严 , 吴璇 , 王军 , 等 . “双碳”背景下天然气制氢先进技术及应用场景 [J ] . 当代化工研究 , 2023 , 141 ( 16 ): 101 - 103 .
LIANG Y , WU X , WANG J , et al . Advanced technology and application scenarios of natural gas to hydrogen in the context of carbon peaking and carbon neutrality [J ] . Modern Chemical Research , 2023 , 141 ( 16 ): 101 - 103 .
黄泽皑 , 周芸霄 , 张魁魁 , 等 . 甲烷裂解制氢和碳材料工艺研究进展 [J ] . 低碳化学与化工 , 2024 , 49 ( 9 ): 1 - 11 .
HUANG Z A , ZHOU Y X , ZHANG K K , et al . Research progress on methane pyrolysis process for hydrogen and carbon materials [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 9 ): 1 - 11 .
张丞 . 专注甲烷催化裂解制氢技术, 氢能源公司 [ROTOBOOST ] 获高瓴近千万美元Pre-A轮融资[EB/OL ] . ( 2023-09-01 )[ 2025-02-15 ] . https://36kr.com/p/2412074736067593 https://36kr.com/p/2412074736067593 .
ZHANG C . Focusing on methane catalytic cracking hydrogen production technology, hydrogen energy company [ROTOBOOST ] wonnearly 10 million dollars of Pre-A round financing from Hillhouse [EB/OL ] . ( 2023-09-01 )[ 2025-02-15 ] . https://36kr.com/p/2412074736067593 https://36kr.com/p/2412074736067593 .
于涛 . 近室温条件下甲烷氧化制甲醇反应研究进展 [J ] . 精细石油化工 , 2024 , 41 ( 4 ): 75 - 80 .
YU T . Reserch progress on oxidation of methane to methanol near room temprerature [J ] . Speciality Petrochemicals , 2024 , 41 ( 4 ): 75 - 80 .
ZENG M Y , CHENG L , GU Q Q , et al . ZSM-5-confined Cr 1 -O 4 active sites boost methane direct oxidation to C1 oxygenates under mild conditions [J ] . EES Catalysis , 2023 , 1 ( 2 ): 153 - 161 .
CUI X J , LI H B , WANG Y , et al . Room-temperature methane conversion by graphene-confined single iron atoms [J ] . Chem , 2018 , 4 ( 8 ): 1902 - 10 .
CAO Y H , GUO R , MA M Z , et al . Effects of electron density variation of active sites in CO 2 activation and photoreduction: A review [J ] . Acta Physico-Chimica Sinica , 2024 , 40 ( 1 ): 2303029 .
许振民 , 卞振锋 . 光催化甲烷转化研究进展 [J ] . 物理化学学报 , 2020 , 36 ( 3 ): 82 - 92 .
XU Z M , BIAN Z F . Photocatalytic methane conversion [J ] . Acta Physico-Chimica Sinica , 2020 , 36 ( 3 ): 82 - 92 .
CHUBB T A . Characteristics of CO 2 -CH 4 reforming-methanation cycle relevant to the solchem thermochemical power system [J ] . Solar Energy , 1980 , 24 ( 4 ): 341 - 345 .
何展军 , 黄敏 , 林铁军 , 等 . 光热催化甲烷干重整研究进展 [J ] . 物理化学学报 , 2023 , 39 ( 9 ): 28 - 40 .
HE Z J , HUANG M , LIN T J , et al . Recent advances in dry reforming of methane via photothermocatalysis [J ] . Acta Physico-Chimica Sinica , 2023 , 39 ( 9 ): 28 - 40 .
RAO Z Q , WANG K W , CAO Y H , et al . Light-reinforced key intermediate for anticoking to boost highly durable methane dry reforming over single atom Ni active sites on CeO 2 [J ] . Journal of the American Chemical Society , 2023 , 145 ( 45 ): 24625 - 24635 .
DU Z , PAN F , YANG X , et al . Efficient photothermochemical dry reforming of methane over Ni supported on ZrO 2 with CeO 2 incorporation [J ] . Catalysis Today , 2023 , 409 ( 1 ): 31 - 41 .
YAO J L , ZHANG Z Y , XU B Y , et al . Spectral properties regulation for the performance improvement of solar-driven methane dry reforming reactor based on the photothermal synergistic catalysis [J ] . Fuel , 2025 , 380 : 133228 .
SAID S A M , SIMAKOV D S A , WASEEUDDIN M , et al . Solar molten salt heated membrane reformer for natural gas upgrading and hydrogen generation: A CFD model [J ] . Solar Energy , 2016 , 124 : 163 - 176 .
秦宁 , 赵露露 , 穆泽垲 , 等 . 太阳能驱动甲烷干重整Ni泡沫反应器的设计与优化 [J ] . 低碳化学与化工 , 2024 , 49 ( 5 ): 72 - 80 .
QIN N , ZHAO L L , MU Z K , et al . Design and optimization of solar energy driven Ni foam reactor for methane dry reforming [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 5 ): 72 - 80 .
KALIAGUINE S L , SHELIMOV B N , KAZANSKY V B . Reactions of methane and ethane with hole centers O - [J ] . Journal of Catalysis , 1978 , 55 ( 3 ): 384 - 393 .
申恒芳 , 李文翠 , 蔡佳芯 , 等 . 甲烷选择氧化单原子催化剂的研究进展 [J ] . 中国科学: 化学 , 2024 , 54 ( 3 ): 309 - 337 .
SHEN H F , LI W C , CAI J X , et al . Research progress in single-atom catalysts for the selective oxidation of methane [J ] . Scientia Sinica (Chimica) , 2024 , 54 ( 3 ): 309 - 337 .
KATO Y , YOSHIDA H , HATTORI T . Photoinduced non-oxidative coupling of methane over silica-alumina and alumina around room temperature [J ] . Chemical Communications , 1998 , ( 21 ): 2389 - 2390 .
FENG N D , LIN H W , SONG H , et al . Efficient and selective photocatalytic CH 4 conversion to CH 3 OH with O 2 by controlling overoxidation on TiO 2 [J ] . Nature Communications , 2021 , 12 ( 1 ): 4652 .
SONG H , MENG X G , WANG S Y , et al . Direct and selective photocatalytic oxidation of CH 4 to oxygenates with O 2 on cocatalysts/ZnO at room temperature in water [J ] . Journal of the American Chemical Society , 2019 , 141 ( 51 ): 20507 - 20515 .
LUO L , FU L , LIU H F , et al . Synergy of Pd atoms and oxygen vacancies on In 2 O 3 for methane conversion under visible light [J ] . Nature Communications , 2022 , 13 ( 1 ): 2930 .
林海婷 , 李佳男 , 谢远江 , 等 . 银负载三氧化钨高选择性光催化甲烷转化 [J ] . 当代化工研究 , 2024 , 24 ( 20 ): 1 - 4 .
LIN H T , LI J N , XIE Y J , et al . Highly selective photocatalytic methane oxidation with silver-loaded tungsten trioxide [J ] . Modern Chemical Research , 2024 , 24 ( 20 ): 1 - 4 .
SONG S , SONG H , LI L M , et al . A selective Au-ZnO/TiO 2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen [J ] . Nature Catalysis , 2021 , 4 ( 12 ): 1032 - 1042 .
JIANG Y H , LI S Y , FAN Y Y , et al . Best practices for experiments and reports in photocatalytic methane conversion [J ] . Angewandte Chemie International Edition , 2024 , 136 ( 24 ): e202404658 .
LUO L H , LUO J , LI H L , et al . Water enables mild oxidation of methane to methanol on gold single-atom catalysts [J ] . Nature Communications , 2021 , 12 ( 1 ): 1218 .
XIE J J , JIN R X , LI A , et al . Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species [J ] . Nature Catalysis , 2018 , 1 ( 11 ): 889 - 896 .
ZENG Y , LIU H C , WANG J S , et al . Synergistic photocatalysis-Fenton reaction for selective conversion of methane to methanol at room temperature [J ] . Catalysis Science & Technology , 2020 , 10 ( 8 ): 2329 - 2332 .
SAPUTERA W H , YUNIAR G , SASONGKO D . Light-driven methane conversion: Unveiling methanol using a TiO 2 /TiOF 2 photocatalyst [J ] . RSC Advances , 2024 , 14 ( 13 ): 8740 - 8751 .
AN B , LI Z , WANG Z , et al . Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site [J ] . Nature Materials , 2022 , 21 ( 8 ): 932 - 938 .
HAN C Q , CAO Y H , YU W , et al . Selective cleavage of chemical bonds in targeted intermediates for highly selective photooxidation of methane to methanol [J ] . Journal of the American Chemical Society , 2023 , 145 ( 15 ), 8609 - 8620 .
韩春秋 , 曹玥晗 , 邱杰 , 等 . Ga-O双功能位点促进高选择性光催化甲烷直接转化制甲醇 [J ] . 科学通报 , 2023 , 68 ( 33 ): 4544 - 4555 .
HAN C Q , CAO Y H , QIU J , et al . Promotion of highly selective photocatalytic conversion of methane into methanol by Ga-O bifunctional sites [J ] . Chinese Science Bulletin , 2023 , 68 ( 33 ): 4544 - 4555 .
刘帅 , 李春虎 , 朴玲钰 . TiO 2 纳米片光催化甲烷高选择性制甲醛 [J ] . 燃料化学学报(中英文) , 2025 , 53 ( 3 ): 409 - 418 .
LIU S , LI C H , PIAO L Y . Photocatalytic highly selective generation of HCHO by TiO 2 nanosheets [J ] . Journal of Fuel Chemistry and Technology , 2025 , 53 ( 3 ): 409 - 418 .
ZHENG K , WU Y , ZHU J C , et al . Room-temperature photooxidation of CH 4 to CH 3 OH with nearly 100% selectivity over Hetero-ZnO/Fe 2 O 3 porous nanosheets [J ] . Journal of the American Chemical Society , 2022 , 144 ( 27 ): 12357 - 12366 .
LI Z H , PAN X Y , YI Z G . Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts [J ] . Journal of Materials Chemistry A , 2019 , 7 ( 2 ): 469 - 475 .
MENG L S , CHEN Z Y , MA Z Y , et al . Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces [J ] . Energy & Environmental Science , 2018 , 11 ( 2 ): 294 - 298 .
CHEN Z Y , WU S Q , MA J Y , et al . Non-oxidative coupling of methane: N-type doping of niobium single atoms in TiO 2 -SiO 2 induces electron localization [J ] . Angewandte Chemie International Edition , 2021 , 60 ( 21 ): 11901 - 11909 .
ZHANG W Q , FU C F , LOW J X , et al . High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO 2 [J ] . Nature Communications , 2022 , 13 ( 1 ): 2806 .
ZHANG H Z , SUN P F , FEI X Z , et al . Unusual facet and co-catalyst effects in TiO 2 -based photocatalytic coupling of methane [J ] . Nature Communications , 2024 , 15 ( 1 ): 4453 .
下转第 122 页)
CARMINATI S A , JANUáRIO E R , MACHADO A P , et al . Methane conversion and hydrogen production over TiO 2 /WO 3 /Pt heterojunction photocatalysts [J ] . Materials Advances , 2024 , 5 ( 2 ): 608 - 615 .
CAO Y H , YU W , HAN C Q , et al . Methane photooxidation with nearly 100% selectivity towards oxygenates: Proton rebound ensures the regeneration of methanol [J ] . Angewandte Chemie , 2023 , 62 ( 18 ): e202302196 .
CAO Y H , YU W , LI Y , et al . Engineering ultrafast photo-induced charge and carbon intermediates transfer at interface to break the activity-selectivity trade-off in direct conversion of methane to methanol [J ] . Advanced Energy Materials , 2024 , 15 ( 6 ): 2404871 .
ZHOU Y Y , ZHANG L , WANG W Z . Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis [J ] . Nature Communications , 2019 , 10 ( 1 ): 506 .
WANG J , PENG Y H , XIAO W . Photocatalytic nonoxidative coupling of methane to ethylene over carbon-doped ZnO/Au catalysts [J ] . Science China Chemistry , 2023 , 66 ( 11 ): 3252 - 3261 .
BO C L , LIU J , ZHANG Y T , et al . Effective photocatalytic methane oxidation over the TiO 2 /methanotrophs system [J ] . Nano Today , 2023 , 52 : 101938 .
CAO Y H , HUANG Z A , HAN C Q , et al . Product peroxidation inhibition in methane photooxidation into methanol [J ] . Advanced Science , 2024 , 11 ( 12 ): 2306891 .
韩春秋 , 曹玥晗 , 黄川 , 等 . 光催化甲烷直接转化制甲醇提高甲烷转化率和甲醇选择性 [J ] . 化学进展 , 2024 , 36 ( 6 ): 867 - 877 .
HAN C Q , CAO Y H , HUANG C , et al . Photocatalytic methane oxidation to methanol in promoting methane conversion rate and methanol selectivity [J ] . Progress in Chemistry , 2024 , 36 ( 6 ): 867 - 877 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构