浏览全部资源
扫码关注微信
1.太原理工大学 化学与化工学院,山西 太原 030024
2.陕西未来清洁化学品有限公司,陕西 榆林 719000
雷海凤(1998—),硕士研究生,研究方向为煤焦油模型化合物催化转化,E-mail:h15383436435@163.com。
王明义(1990—),博士,讲师,研究方向为煤热解产物定向调控,E-mail:wangmingyi@tyut.edu.cn。
收稿日期:2025-01-21,
修回日期:2025-02-24,
纸质出版日期:2025-08-25
移动端阅览
雷海凤,樊磊,王明义等.NiAl-LDH催化焦油模型化合物加氢转化性能[J].低碳化学与化工,2025,50(8):26-33.
LEI Haifeng,FAN Lei,WANG Mingyi,et al.Hydrotreatment performance of NiAl-LDH catalyst for tar model compounds[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):26-33.
雷海凤,樊磊,王明义等.NiAl-LDH催化焦油模型化合物加氢转化性能[J].低碳化学与化工,2025,50(8):26-33. DOI: 10.12434/j.issn.2097-2547.20250034.
LEI Haifeng,FAN Lei,WANG Mingyi,et al.Hydrotreatment performance of NiAl-LDH catalyst for tar model compounds[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(8):26-33. DOI: 10.12434/j.issn.2097-2547.20250034.
在焦油提质过程中,实现焦油裂解与富氢气体转化的协同调控是提升催化剂性能的关键。为此,采用水热法制备了具有类水滑石层状结构的Ni基催化剂(NiAl-LDH),并引入Co以优化其性能。依托类水滑石的层间限域效应,实现了焦油催化转化活性位点与富氢气体活化位点的空间分离,将Ni均匀分布于主体层板上。由于分子尺寸较大的焦油模型化合物(如芘和荧蒽)难以进入层间结构,其裂解反应主要发生在催化剂表面,而小分子气体既可进入层间,也能在催化剂表面被充分活化。结果表明,Co的引入有效促进了Ni的分散并提高了其还原性能,其中
n
(Ni)/
n
(Co) = 5时催化剂表现出最优催化效果。在500 ℃下,Ni
2.5
Co
0.5
Al-LDH催化剂对芘的加氢催化转化率为48.03%,轻质芳烃(BTX)选择性达55.63%。此外,荧蒽中C—C键更易断裂,其转化率和BTX选择性均高于芘。位于主体层板上的Ni能够活化H
2
生成·H自由基,进而稳定焦油裂解碎片,从而提高BTX选择性。本研究可为焦油提质催化剂的设计提供新的思路。
In the process of tar upgrading
achieving synergistic regulation of tar cracking and hydrogen-rich gas conversion is key to improving catalyst performance. To this end
Ni-based catalysts with a layered hydrotalcite-like structure (NiAl-LDH) were prepared using a hydrothermal method
and Co was introduced to optimize their performance. Relying on the interlayer confinement effect of the hydrotalcite-like structure
the spatial separation of active sites for tar catalytic conversion and hydrogen-rich gas activation was realized
enabling uniform distribution of Ni on the main layer plate. Due to the large molecular size of tar model compounds (such as pyrene and fluoranthene)
they are unable to enter the interlayer structure
and thus their cracking mainly occurs on the catalyst surface. In contrast
small gas molecules can enter the interlayer and be effectively activated on the catalyst surface. The results show that the introduction of Co significantly promotes the dispersion and improve reduction performance of Ni
with the optimal catalytic performance achieved when
n
(Ni)/
n
(Co) = 5. Under reaction conditions of 500 ℃
the Ni
2.5
Co
0.5
Al-LDH catalyst achieves a pyrene hydrogenation catalytic conversion rate of 48.03%
with a light aromatic hydrocarbon (BTX) selectivity of 55.63%. In addition
due to the easier cleavage of C—C bonds in fluoranthene
its conversion rate and BTX selectivity are higher than those of pyrene. The Ni located on the main layer plate can activate H
2
to generate ·H radicals
which help stabilize the tar cracking fragments
thereby enhancing BTX selectivity in the products. This study can pro
vide new insights into for design of tar upgrading catalysts.
PAN D F , QU X , BI J C . Effect of gasified semi-coke on coal pyrolysis in the poly-generation of CFB gasification combined with coal pyrolysis [J ] . Journal of Analytical and Applied Pyrolysis , 2017 , 127 : 461 - 467 .
SHI X G , WU Y Y , ZHANG J , et al . Comparison of pyrolysis behavior between pure coal and mixture of coal/CaO [J ] . Journal of Analytical and Applied Pyrolysis , 2021 , 159 : 105311 .
姜广策 , 张生娟 , 王永刚 , 等 . 低温煤焦油中特定芳烃组分的选择性分离 [J ] . 化工学报 , 2015 , 66 ( 6 ): 2131 - 2138 .
JIANG G C , ZHANG S J , WANG Y G , et al . Selective separation of aromatic hydrocarbons from low temperature coal tar [J ] . Journal of Chemical Industry and Engineering , 2015 , 66 ( 6 ): 2131 - 2138 .
邱泽刚 , 李壮壮 , 李志勤 . 中低温煤焦油转化利用技术研究进展 [J ] . 石油学报(石油加工) , 2024 , 40 ( 4 ): 953 - 964 .
QIU Z G , LI Z Z , LI Z Q . Research progress in conversion and utilization technology of middle/low-temperature coal tar [J ] . Acta Petrolei Sinica (Petroleum Processing Section) , 2024 , 40 ( 4 ): 953 - 964 .
LI Q , WANG T , WU D L , et al . Novel halogen-free deep eutectic solvents for efficient extraction of phenolic compounds from real coal tar [J ] . Journal of Molecular Liquids , 2023 , 382 : 122002 .
WANG J X , ZHANG S P , XU D , et al . Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking [J ] . Fuel , 2022 , 323 : 124278 .
LIU Y Q , YAO Q X , SUN M , et al . Selective preparation of light aromatic hydrocarbons from catalytic fast pyrolysis vapors of coal tar asphaltene over transition metal ion modified zeolites [J ] . Chinese Journal of Chemical Engineering , 2021 , 35 : 275 - 287 .
BAI J , HE Z , YANG L Y , et al . Preparation and characterization of furfural residue derived char-based catalysts for biomass tar cracking [J ] . Waste Management , 2024 , 179 : 182 - 191 .
DI M N , WANG M Y , JIN L J , et al . In-situ catalytic cracking of coal pyrolysis tar coupled with steam reforming of ethane over carbon-based catalyst [J ] . Fuel Processing Technology , 2020 , 209 : 106551 .
REN X Y , CAO J P , ZHAO X Y , et al . Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5: SiO 2 /Al 2 O 3 ratio effects and mechanism insights [J ] . Journal of Analytical and Applied Pyrolysis , 2019 , 139 : 22 - 30 .
董子豪 , 王明义 , 李文林 , 等 . 封装型Ni基催化剂对煤焦油模型化合物催化转化的性能研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 4 ): 71 - 78 .
DONG Z H , WANG M Y , LI W L , et al . Study on conversion performance of encapsulated Ni-based catalysts for coal tar model compounds [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 4 ): 71 - 78 .
TAN L , SUN X L , BAI S , et al . Dual Engineering of lattice strain and valence state of NiAl-LDHs for photoreduction of CO 2 to highly selective CH 4 [J ] . Small , 2023 , 19 ( 11 ): 2205770 .
ZHENG W W , SUN S G , XU Y Q , et al . Facile synthesis of NiAl-LDH/MnO 2 and NiFe-LDH/MnO 2 composites for high-performance asymmetric supercapacitors [J ] . Journal of Alloys and Compounds , 2018 , 768 : 240 - 248 .
MALLAKPOUR S , HATAMI M . Biosafe organic diacid intercalated LDH/PVC nanocomposites versus pure LDH and organic diacid intercalated LDH: Synthesis, characterization and removal behavior of Cd 2+ from aqueous test solution [J ] . Applied Clay Science , 2017 , 149 : 28 - 40 .
NYONGOMBE G , KABONGO G L , BELLO I T , et al . The impact of drying temperature on the crystalline domain and the electrochemical performance of NiCoAl-LDH [J ] . Energy Reports , 2022 , 8 : 1151 - 1158 .
ZHANG F Y , LU B , SUN P Q . Co-promoted Ni nano catalysts derived from NiCoAl-LDHs for low temperature CO 2 methanation [J ] . Catalysts , 2021 , 11 ( 1 ): 121 .
任宝锦 . 基于层状双金属氢氧化物构筑镍基催化剂及其催化二氧化碳甲烷化性能研究 [D ] . 北京 : 北京化工大学 , 2020 .
REN B J . Study on CO 2 methanation performance of nickel-based catalysts prepared bylayered hydroxide precursor method [D ] . Beijing : Beijing University of Chemical Technology , 2020 .
LIU M R , ZHANG J Y , ZHENG L R , et al . Significant promotion of surface oxygen vacancies on bimetallic CoNi nano catalysts for hydrodeoxygenation of biomass-derived vanillin to produce methyl cyclohexanol [J ] . ACS Sustainable Chemistry & Engineering , 2020 , 8 ( 15 ): 6075 - 6089 .
ZHANG J G , WANG H , DALAI A K . Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J ] . Journal of Catalysis , 2007 , 249 ( 2 ): 300 - 310 .
JEANTELOT G , FØLKNER S P , MANEGOLD J I , et al . Selective hydrodeoxygenation of lignin-derived phenols to aromatics catalyzed by Nb 2 O 5 -supported iridium [J ] . ACS Omega , 2022 , 7 ( 35 ): 31561 - 31566 .
HE Y Y , YAN L J , LIU Y J , et al . Effect of SiO 2 /Al 2 O 3 ratios of HZSM-5 zeolites on the formation of light aromatics during lignite pyrolysis [J ] . Fuel Processing Technology , 2019 , 188 : 70 - 78 .
闫伦靖 . 煤焦油气相催化裂解生成轻质芳烃的研究 [D ] . 太原 : 太原理工大学 , 2016 .
YAN L J . Analysis on converting gaseous tar to lightarenes by catalytic cracking [D ] . Taiyuan : Taiyuan University of Technology , 2016 .
贾鹏 , 王明义 , 王玉高 , 等 . 封装型Ni基催化剂制备及其原位提质煤热解焦油的性能 [J ] . 洁净煤技术 , 2024 , 30 ( 4 ): 179 - 186 .
JIA P , WANG M Y , WANG Y G , et al . Preparation of encapsulated Ni-based catalyst and its performance in-situ upgrading of coal pyrolysis tar [J ] . Clean Coal Technology , 2024 , 30 ( 4 ): 179 - 186 .
PUJRO R , FALCO M , SEDRAN U . Catalytic cracking of heavy aromatics and polycyclic aromatic hydrocarbons over fluidized catalytic cracking catalysts [J ] . Energy & Fuels , 2015 , 29 ( 3 ): 1543 - 1549 .
王明义 . 煤热解焦油原位催化裂解与甲烷催化重整耦合提质研究 [D ] . 大连 : 大连理工大学 , 2019 .
WANG M Y . Integrated in-situ catalytic cracking with catalytic reforming of methane for upgrading of coal pyrolysis tar [D ] . Dalian : Dalian University of Technology , 2019 .
WANG M Y , JIN L J , ZHAO H B , et al . In-situ catalytic upgrading of coal pyrolysis tar over activated carbon supported nickel in CO 2 reforming of methane [J ] . Fuel , 2019 , 250 : 203 - 210 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构