
浏览全部资源
扫码关注微信
西南大学 化学化工学院,重庆 400715
何李(2001—),硕士研究生,研究方向为天然气化工,E-mail:1030026969@qq.com。
甘利华(1975—),博士,研究员,研究方向为天然气化工,E-mail:ganlh@swu.edu.cn。
收稿:2025-01-15,
修回:2025-02-28,
纸质出版:2025-10-25
移动端阅览
何李,杨培渊,甘利华.基于计算流体力学的天然气空气部分氧化制乙炔模拟研究[J].低碳化学与化工,2025,50(10):126-137.
HE Li,YANG Peiyuan,GAN Lihua.Simulation study on acetylene production from partial oxidation of natural gas with air based on computational fluid dynamics[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(10):126-137.
何李,杨培渊,甘利华.基于计算流体力学的天然气空气部分氧化制乙炔模拟研究[J].低碳化学与化工,2025,50(10):126-137. DOI: 10.12434/j.issn.2097-2547.20250019.
HE Li,YANG Peiyuan,GAN Lihua.Simulation study on acetylene production from partial oxidation of natural gas with air based on computational fluid dynamics[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(10):126-137. DOI: 10.12434/j.issn.2097-2547.20250019.
天然气非催化部分氧化法已广泛实现工业化,如何进一步降低成本仍是该技术面临的挑战。基于计算流体力学并结合GRI-Mech 3.0化学反应机理,对天然气空气部分氧化制乙炔进行了数值模拟,探讨了其在化学反应及工艺方面的可行性。结果表明,氮气不参与反应;在预热温度为923 K、氧烃比(
n
(O
2
)/
n
(CH
4
))为0.70和进料流速为200~300 m/s条件下,反应器出口乙炔的物质的量分数可达8.9%,高于工业生产过程(7.8%);生成合成气的氢碳比(
n
(H
2
)/
n
(CO))为1.8,略低于以纯氧为氧化剂时的氢碳比。尽管天然气空气部分氧化在产品分离阶段工艺更为复杂,但由于无需高能耗的空分设备及其相关单元操作,仍展现出良好的应用前景。
The non-catalytic partial oxidation of natural gas has been widely industrialized
but further cost reduction remains a key challenge for the technology. Based on computational fluid dynamics and the GRI-Mech 3.0 chemical reaction mechanism
numerical simulations of acetylene production via partial oxidation of natural gas with air were conducted
and its feasibility in terms of chemical reactions and process design was investigated. The results indicate that nitrogen does not participate in the reaction. Under conditions of the preheating temperature of 923 K
oxygen-to-carbon ratio (
n
(O
2
)/
n
(CH
4
)) of 0.70 and feed velocity of 200 m/s to 300 m/s
the mole fraction of acetylene at the reactor outlet can reach 8.9%
which is higher than the 7.8% observed in industrial production. The hydrogen-to-carbon monoxide ratio (
n
(H
2
)/
n
(CO)) of the generated syngas is 1.8
slightly lower than that obtained using pure oxygen as the oxidant. Although the product separation process is more complex when air is used as the oxidant
it still shows good application prospects due to the elimination of air separation units and associated high-energy-consuming operations.
IEA . World energy outlook 2023 [EB/OL ] . [ 2025-03-04 ] . https://www.iea.org/reports/world-energy-outlook-2023 https://www.iea.org/reports/world-energy-outlook-2023 .
WANG Z Q , FAN Z , CHEN X , et al . Global oil and gas development in 2022: Situation, trends and enlightenment [J ] . Petroleum Exploration and Development , 2023 , 50 ( 5 ): 1167 - 1186 .
GUDIYELLA S , BURAS Z J , CHU T C , et al . Modeling study of high temperature pyrolysis of natural gas [J ] . Industrial & Engineering Chemistry Research , 2018 , 57 : 7404 - 7420 .
MAJHI S , MOHANTY P , WANG H , et al . Direct conversion of natural gas to higher hydrocarbons: A review [J ] . Journal of Energy Chemistry , 2013 , 22 : 543 - 554 .
SALAHUDEEN N , RASHEED A A , BABALOLA A , et al . Review on technologies for conversion of natural gas to methanol [J ] . Journal of Natural Gas Science and Engineering , 2022 , 108 : 104845 .
BLANKENSHIP A , ARTSIUSHEUSKI M , SUSHKEVICH V , et al . Recent trends, current challenges and future prospects for syngas-free methane partial oxidation [J ] . Nature Catalysis , 2023 , 6 : 748 - 762 .
ALSUDANI F T , SAEED A N , ALI N S , et al . Fisher-Tropsch synthesis for conversion of methane into liquid hydrocarbons through gas-to-liquids (GTL) process: A review [J ] . Methane , 2023 , 2 : 24 - 43 .
U.S. Department of Energy . Hydrogen strategy enabling a low-carbon economy [EB/OL ] . [ 2025-03-04 ] . https://www.energy.gov/sites/default/files/2020/08/f77/Hydrogen%20Economy%20Strategy%20Fact%20Sheet.pdf https://www.energy.gov/sites/default/files/2020/08/f77/Hydrogen%20Economy%20Strategy%20Fact%20Sheet.pdf .
BORETTI A , BANIK B K . Advances in hydrogen production from natural gas reforming [J ] . Advanced Energy and Sustainability Research , 2021 , 2 : 2100097 .
SCHIAROLI N , VOLANTI M , CRIMALDI A , et al . Biogas to syngas through the combined steam/dry reforming process: An environmental impact assessment [J ] . Energy Fuels , 2021 , 35 : 4224 - 4236 .
ALHASSAN A M , HUSSAIN I , TAIALLA O A , et al . Advances in catalytic dry reforming of methane (DRM): Emerging trends, current challenges, and future perspectives [J ] . Journal of Cleaner Production , 2023 , 423 : 138638 .
PÄSSLER P , HEFNER W , BUCKL K , et al . Ullmann’s encyclopedia of industrial chemistry [M ] . 7th ed . Berlin : Wiley-VCH Verlag GmbH & Co. , 2011 .
OSMAN A I . Catalytic Hydrogen production from methane partial oxidation: Mechanism and kinetic study [J ] . Chemical Engineering Technology , 2020 , 43 : 641 - 648 .
SAVCHENKO V I , ZIMIN Y S , BUSILLO E , et al . Equilibrium composition of products formed by non-catalytic conversion of hydrocarbons [J ] . Petroleum Chemistry , 2022 , 62 ( 3 ): 375 - 386 .
SAVCHENKO V I , NIKITIN A V , SEDOV I V , et al . The role of homogeneous steam reforming of acetylene in the partial oxidation of methane to syngas in matrix type converters [J ] . Chemical Engineering Science , 2019 , 207 : 744 - 751 .
SAVCHENKO V I , NIKITIN A V , ZIMIN Y S , et al . Impact of post-flame processes on the hydrogen yield in partial oxidation of methane in the matrix reformer [J ] . Chemical Engineering Research and Design , 2021 , 175 : 250 - 258 .
BUSILLO E , SAVCHENKO V I , ARUTYUNOV V S . On the mechanism of methane conversion in the noncatalytic processes of its thermal pyrolysis and steam and carbon dioxide reforming [J ] . Petroleum Chemistry , 2021 , 61 ( 6 ): 820 - 826 .
DAGDE K K , AKPA J G . Computer-aided design of a non-isothermal plug flow reactor for non-catalytic partial oxidation of methane to synthesis gas [J ] . Chemical and Process Engineering Research , 2014 , 28 : 9 - 18 .
SALGANSKY E A , TSVETKOV M V , ZAICHENKO A Y , et al . Thermodynamic evaluation of noncatalytic conversion of natural gas with the production of synthesis gas [J ] . Russian Journal of Physical Chemistry B , 2021 , 15 ( 6 ): 969 - 976 .
YOUNG A F , VILLARDI H G D , ARAUJO L S , et al . Detailed design and economic evaluation of a cryogenic air separation unit with recent literature solutions [J ] . Industrial & Engineering Chemistry Research , 2021 , 60 : 14830 - 14844 .
王福军 . 计算流体动力学分析—CFD软件原理与应用 [M ] . 北京 : 清华大学出版社 , 2004 : 1 - 22 .
WANG F G . Computational fluid dynamics analysis—Principles and applications of CFD software [M ] . Beijing : Tsinghua University Press , 2004 : 1 - 22 .
SHIH T H , LIOU W W , SHABBIR A , et al . A new k- ε eddy viscosity model for high: Reynolds number turbulent flows [J ] . Compurers Fluids , 1995 , 24 : 227 - 238 .
RONDEAUX E , POUBEAU A , ANGELBERGER C , et al . Exploring the potential and the practical usability of a machine learning approach for improving wall friction predictions of RANS wall functions in non-equilibrium turbulent flows [J ] . Flow, Turbulence and Combustion , 2024 , 112 ( 4 ): 975 - 1000 .
POPE S B . PDF methods for turbulent reactive flows [J ] . Progress in Energy and Combustion Science , 1985 , 11 ( 2 ): 119 - 192 .
POPE S B . Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation [J ] . Combustion Theory and Modeling , 1997 , 1 : 41 - 63 .
SUBRAMANIAM S , POPE S B . A mixing model for turbulent reactive flows based on euclidean minimum spanning trees [J ] . Combustion and Flame , 1998 , 115 : 487 - 514 .
WALUYO R , AZIZ M . Advanced numerical simulation of hydrogen/air turbulent non-premixed flame on model burner [J ] . Thermal Science and Engineering Progress , 2024 , 49 : 102467 .
PATANKAR S V , SPALDING D B . A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows [J ] . International Journal of Heat and Mass Transfer , 1972 , 15 : 1787 - 1806 .
CHEN D E , CHEN X , LUO C , et al . Structural design and performance evaluation of industrial-scale C 2 H 2 reactor by partial oxidation of natural gas [J ] . Chemical Engineering Journal , 2021 , 426 : 130871 .
CHEN D E , GAN L H . Non-catalytic direct conversion of CH 4 and CO 2 into high-quality syngas [J ] . Chemical Engineering Journal , 2022 , 439 : 135732 .
RA Y , REITZ R D . A combustion model for IC engine combustion simulations with multi-component fuels [J ] . Combustion and Flame , 2011 , 158 : 69 - 90 .
马承飚 , 林其钊 . 利用敏感性分析方法简化的贫燃甲烷氧化反应机理 [J ] . 国防科技大学学报 , 2017 , 39 ( 2 ): 164 - 170 .
MA C B , LIN Q Z . Reduced mechanism for lean-fuel methane oxidation through sensitivity analysis [J ] . Journal of National University of Defense Technology , 2017 , 39 ( 2 ): 164 - 170 .
乔瑜 , 徐明厚 , 姚洪 . 基于敏感性分析的甲烷反应机理优化简化 [J ] . 华中科技大学学报 , 2007 , 35 ( 5 ): 85 - 87 .
QIAO Y , XU M H , YAO H . Optimally—reduced kinetic models for GRI—Mech 3.0 combustion mechanism based on sensitivity analysis [J ] . Journal of Huazhong University of Science & Technology , 2007 , 35 ( 5 ): 85 - 87 .
WILLIAMS F A . The San Diego mechanism [EB/OL ] . [ 2025-03-04 ] . http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html .
GALADIMA A , MURAZA O . From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review [J ] . Journal of Natural Gas Science and Engineering , 2015 , 25 : 303 - 316 .
SU J J , LIU C , LIU S L , et al . High conversion of syngas to ethene and propene on bifunctional catalysts via the tailoring of SAPO zeolite structure [J ] . Cell Reports Physical Science , 2021 , 2 : 100290 .
MARTÍN-ESPEJO J L , GANDARA-LOE J , ODRIOZOLA J A , et al . Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy [J ] . Science of the Total Environment , 2022 , 840 : 156663 .
QIAN Q L , ZHANG J J , CUI M , et al . Synthesis of acetic acid via methanol hydro carboxylation with CO 2 and H 2 [J ] . Nature Communications , 2016 , 7 : 11481 .
尚丽霞 , 谢卫国 , 吕绍洁 , 等 . 甲烷和空气部分氧化制合成气 [J ] . 合成化学 , 2001 , 9 ( 2 ): 113 - 117 .
SHANG L X , XIE W G , LU S J , et al . Methane and air are partially oxidized to produce syngas [J ] . Chinese Journal of Synthetic Chemistry , 2001 , 9 ( 2 ): 113 - 117 .
KONNOV A A , ZHU J N , H J , et al . Noncatalytic partial oxidation of methane into syngas over a wide temperature range [J ] . Combustion Science and Technology , 2004 , 176 : 1093 - 1116 .
YU Q J , CAI Y X , ZHANG Q L , et al . Silica-alumina zeolite adsorbents for oxygen generation via pressure swing adsorption: Mechanisms and challenge [J ] . Chemical Engineering Journal , 2024 , 481 : 148788 .
ADHIKARI B , ORME C J , KLAEHN J R , et al . Technoeconomic analysis of oxygen-nitrogen separation for oxygen enrichment using membranes [J ] . Separation and Purification Technology , 2021 , 268 : 118703 .
MU Y , YAN L F , CHU B Z , et al . Prediction of solubility of acetylene in organic solvents over a wide range of temperature and pressure [J ] . Chemical Engineering Science , 2023 , 276 : 118824 .
CAVALIERE P . Water electrolysis for hydrogen production [M ] . Luxembourg : Springer , 2023 .
JAMES J , LÜCKING L E , VAN DIJK H A J , et al . Review of technologies for carbon monoxide recovery from nitrogen-containing industrial streams [J ] . Frontiers in Chemical Engineering , 2023 , 5 : 1066091 .
MA X , ALBERTSMA J , GABRIELS D , et al . Carbon monoxide separation: Past, present and future [J ] . Chemical Society Reviews , 2023 , 52 : 3741 - 3777 .
EL-SHAFIE M , KAMBARA S . Recent advances in ammonia synthesis technologies: Toward future zero carbon emissions [J ] . International Journal of Hydrogen Energy , 2023 , 48 : 11237 - 11273 .
DING J , YE R P , FU Y H , et al . Direct synthesis of urea from carbon dioxide and ammonia [J ] . Nature Communications , 2023 , 14 : 4586 .
马国光 , 周明杰 , 雷洋 , 等 . 氮气双膨胀制冷提氦联产乙烷工艺设计与优化 [J ] . 低碳化学与化工 , 2024 , 49 ( 10 ): 110 - 118 .
MA G G , ZHOU M J , LEI Y , et al . Process design and optimization of helium extraction and ethane co-production by nitrogen double expansion refrigeration [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 10 ): 110 - 118 .
钟颖 , 汪秉文 . 基于遗传算法的BP神经网络时间序列预测模型 [J ] . 系统工程与电子技术 , 2002 , 24 ( 4 ): 9 - 11 .
ZHONG Y , WANG B W . BP network sequence prediction model based on genetic algorithm [J ] . Systems Engineering and Electronics , 2002 , 24 ( 4 ): 9 - 11 .
周启超 . BP算法改进及在软件成本估算中的应用 [J ] . 计算机技术与发展 , 2016 , 26 ( 2 ): 195 - 198 .
ZHOU Q C . Improvement of BP algorithms and its application in software cost estimation [J ] . Computer Technology and Development , 2016 , 26 ( 2 ): 195 - 198 .
王嵘冰 , 徐红艳 , 李波 , 等 . BP神经网络隐含层节点数确定方法研究 [J ] . 计算机技术与发展 , 2018 , 28 ( 4 ): 31 - 35 .
WANG R B , XU H Y , LI B , et al . Research on method of determining hidden layer nodes in BP neural network [J ] . Computer Technology and Development , 2018 , 28 ( 4 ): 31 - 35 .
孙佰清 , 潘启树 , 冯英浚 , 等 . 提高BP网络训练速度的研究 [J ] . 哈尔滨工业大学学报 , 2001 , 48 ( 4 ): 439 - 441 .
SUN B Q , PAN Q S , FENG Y Jet al . Improvement of BP network training rate [J ] . Journal of Harbin Institute of Technology , 2001 , 48 ( 4 ): 439 - 441 .
CHEN X Y , CHAU K W , BUSARI A O . A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model [J ] . Engineering Applications of Artificial Intelligence , 2015 , 46 : 258 - 268 .
JIA W K , ZHAO D A , SHEN T A , et al . An optimized classification algorithm by BP neural network based on PLS and HCA [J ] . Applied Intelligence , 2015 , 43 ( 1 ): 176 - 191 .
于小岚 , 熊伟 , 韩驰 . 基于神经网络的效能评估方法综述 [J ] . 兵工自动化 , 2023 , 42 ( 3 ): 1 - 8+43 .
YU X L , XIONG W , HAN C . A survey of effectiveness evaluation methods based on neural network [J ] . Ordnance and Industry Automation , 2023 , 42 ( 3 ): 1 - 8+43 .
MORÉ J J . The Levenberg-Marquardt algorithm: Implementation and theory [C ] //WATSON G A. Numerical Analysis . Berlin : Springer , 1978 : 105 - 116 .
刘建华 . 粒子群算法的基本理论及其改进研究 [D ] . 长沙 : 中南大学 , 2010 .
LIU J H . The Research of basic theory and improvement on particle swarm optimization [D ] . Changsha : Central South University , 2010 .
葛继科 , 邱玉辉 , 吴春明 , 等 . 遗传算法研究综述 [J ] . 计算机应用研究 , 2008 , 25 ( 10 ): 2911 - 2916 .
GE J K , QIU Y H , WU C M , et al . Summary of genetic algorithms research , [J ] . Application Research of Computers , 2008 , 25 ( 10 ): 2911 - 2916 .
文绍纯 , 罗飞 , 付连续 . 遗传算法在人工神经网络中的应用综述 [J ] . 计算技术与自动化 , 2001 , 20 ( 2 ): 1 - 5 .
WEN S C , LUO F , F L X . Survey on the application of genetic algorithms in the artificial neural networks [J ] . Computing Technology and Automation , 2001 , 20 ( 2 ): 1 - 5 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
 蜀公网安备51012202001533
 蜀公网安备51012202001533