浏览全部资源
扫码关注微信
1.浙江师范大学 化学与材料科学学院,浙江 金华 321004
2.中国科学院 山西煤炭化学研究所,山西 太原 030001
何悦(1999—),硕士研究生,研究方向为CO2加氢催化剂设计,E-mail:18903063285@163.com。
李瑞英(1995—),博士后,研究方向为工业催化,E-mail:liruiying@sxicc.ac.cn。
收稿日期:2024-12-15,
修回日期:2025-01-17,
纸质出版日期:2025-04-25
移动端阅览
何悦,李瑞英.CO2加氢制CH4/CO的负载型金属催化剂界面调控研究进展[J].低碳化学与化工,2025,50(04):19-28.
HE Yue,LI Ruiying.Research progress on interfacial modulation of supported metal catalysts for CO2 hydrogenation to CH4/CO[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):19-28.
何悦,李瑞英.CO2加氢制CH4/CO的负载型金属催化剂界面调控研究进展[J].低碳化学与化工,2025,50(04):19-28. DOI: 10.12434/j.issn.2097-2547.20240494.
HE Yue,LI Ruiying.Research progress on interfacial modulation of supported metal catalysts for CO2 hydrogenation to CH4/CO[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):19-28. DOI: 10.12434/j.issn.2097-2547.20240494.
为实现“双碳”目标以及缓解环境污染问题,CO
2
利用成为了当前研究的热点之一。由于受到CO
2
分子结构以及复杂的加氢路线限制,开发高活性、高选择性的催化剂是CO
2
高值化利用的关键。负载型金属催化剂因具有大比表面积和高分散度等优势,在CO
2
加氢制CH
4
/CO反应中应用广泛。为提高催化剂的催化活性和产物选择性,需要了解负载型金属催化剂在CO
2
加氢制CH
4
/CO反应过程中的界面调控作用。其中,影响界面结构的因素包括金属结构、载体性质和金属-载体相互作用,这些因素共同决定了催化剂催化性能。总结了CO
2
加氢制CH
4
/CO反应的热力学和机理,重点综述了负载型金属催化剂的研究进展,并讨论了负载型金属催化剂在CO
2
加氢制CH
4
/CO反应中的界面调控作用和催化剂未来的发展方向。
To achieve the goal of “dual carbon” and alleviate environmental pollution
utilization of CO
2
has become a focal point in current research. Due to the limitations of CO
2
molecular structure and the complexity of hydrogenation routes
the development of highly active and selective catalysts is crucial for achieving high-value utilization of CO
2
. Supported metal catalysts are widely used in CO
2
hydrogenation to CH
4
/CO reaction due to the advantages of large specific surface area and high dispersion. To enhance the catalytic activity and product selectivity of catalysts
it is essential to understand the role of interfacial modulation in supported metal catalysts during CO
2
hydrogenation to CH
4
/CO reaction. The interfacial structure is influenced by m
etal structures
carrier properties and metal-carrier interactions
which determine the catalytic performance of catalysts. The thermodynamics and reaction mechanisms of CO
2
hydrogenation to CH
4
/CO were summarized
with a focus on the research progress on supported metal catalysts. The interfacial modulation and future development direction of supported metal catalysts for CO
2
hydrogenation to CH
4
/CO were discussed.
KAUR J , SINGH S K , GUPTA R K , et al . Recent developments in polymeric adsorbents for CO 2 capture [J ] . ChemistrySelect , 2025 , 10 : 1 - 23 .
DAS S , SENGUPTA M , PATEL J , et al . A study of the synergy between support surface properties and catalyst deactivation for CO 2 reforming over supported Ni nanoparticles [J ] . Applied Catalysis A: General , 2017 , 545 : 113 - 126 .
WANG C R , FANG Y H , LIANG G F , et al . Mechanistic study of Cu-Ni bimetallic catalysts supported by graphene derivatives for hydrogenation of CO 2 to methanol [J ] . Journal of CO 2 Utilization , 2021 , 49 : 101542 .
XU L L , YANG H M , CHEN M D , et al . CO 2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier [J ] . Journal of CO 2 Utilization , 2017 , 21 : 200 - 210 .
DIETRICH H M , RIGHETTO R D , KUMAR A , et al . Membrane-anchored HDCR nanowires drive hydrogen-powered CO 2 fixation [J ] . Nature , 2022 , 607 : 823 - 830 .
ABDEL-MAGEED A , WIESE K , HAUBLE A , et al . Steering the selectivity in CO 2 reduction on highly active Ru/TiO 2 catalysts: support particle size effects [J ] . Journal of Catalysis , 2021 , 401 : 160 - 173 .
LI B Y , DUAN Y H , LUEBKE D , et al . Advances in CO 2 capture technology: A patent review [J ] . Applied Energy , 2013 , 102 : 1439 - 1447 .
MELO C I , SZCZEPAŃSKA A , BOGEL-ŁUKASIK E , et al . Hydrogenation of carbon dioxide to methane by ruthenium nanoparticles in ionic liquid [J ] . ChemSusChem , 2016 , 9 ( 10 ): 1081 - 1084 .
LIN S Y , HE R , WANG W H , et al . Highly selective transformation of CO 2 + H 2 into para -xylene via a bifunctional catalyst composed of Cr 2 O 3 and twin-structured ZSM-5 zeolite [J ] . Catalysts , 2023 , 13 ( 7 ): 1080 .
SAEIDI S , SAIDINA AMIN N A , RAHIMPOUR M R , et al . Hydrogenation of CO 2 to value-added products—A review and potential future developments [J ] . Journal of CO 2 Utilization , 2014 , 5 : 66 - 81 .
SONG C S . Global challenges and strategies for control, conversion and utilization of CO 2 for sustainable development involving energy, catalysis, adsorption and chemical processing [J ] . Catalysis Today , 2006 , 115 ( 1/2/3/4 ): 2 - 32 .
FU H , SUN S H , LIAN H L . Enhanced low-temperature CO 2 methanation over Ni/ZrO 2 -Al 2 O 3 catalyst: Effect of Al addition on catalytic performance and reaction mechanism [J ] . Journal of CO 2 Utilization , 2023 , 69 : 102415 .
OLAH G A , GOEPPERT A , PRAKASH G K S . Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons [J ] . Journal of Organic Chemistry , 2009 , 74 ( 2 ): 487 - 498 .
MANABAYEVA A M , MÄKi-ARVELA P , ZUZANA V , et al . Dry reforming of methane over Ni-Fe-Al catalysts prepared by solution combustion synthesis [J ] . Industrial & Engineering Chemistry Research , 2023 , 62 ( 29 ): 11439 - 11455 .
CENTI G , PERATHONER S . Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J ] . Catalysis Today , 2009 , 148 ( 3/4 ): 191 - 205 .
SZAMOSVOLGYI A , PITO A , EFREMOVA A , et al . Optimized Pt-Co alloy nanoparticles for reverse water-gas shift activation of CO 2 [J ] . ACS Applied Nano Materials , 2024 , 7 ( 9 ): 9968 - 9977 .
SHEN L , ZHANG W H , FENG Y F , et al . Revealing the promoting effect of Zn on Ni-based CO 2 hydrogenation catalysts [J ] . Journal of Materials Chemistry A , 2023 , 11 ( 15 ): 8248 - 8255 .
WANG X , HONG Y C , SHI H , et al . Kinetic modeling and transient DRIFTS-MS studies of CO 2 methanation over Ru/Al 2 O 3 catalysts [J ] . Journal of Catalysis , 2016 , 343 : 185 - 195 .
LU B W , LIU Y Y , INOUE M , et al . Mechanism study on dissociation of hydrogen and carbon dioxide towards carbon dioxide methanation [J ] . Chemical Engineering Journal , 2024 , 492 : 152021 .
ARAKAWA H , ARESTA M , ARMOR J N , et al . Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J ] . Chemical Reviews , 2001 , 101 ( 4 ): 953 - 996 .
XIE S H , YE K L , DU J S , et al . Ru/MgO catalyst with dual Ru structure sites for efficient CO production from CO 2 hydrogenation [J ] . Chemical Engineering Journal , 2024 , 487 : 150486 .
RAMIREZ D J , SANCHEZ P , KYRIAKOU V , et al . Effect of support nature on the cobalt-catalyzed CO 2 hydrogenation [J ] . Journal of CO 2 Utilization , 2017 , 21 : 562 - 571 .
SU X , YANG X L , ZHAO B , et al . Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: Recent advances and the future directions [J ] . Journal of Energy Chemistry , 2017 , 26 ( 5 ): 854 - 867 .
王晓月 , 张伟敏 , 姚正阳 , 等 . 逆水煤气变换反应研究进展 [J ] . 化工进展 , 2023 , 42 ( 3 ): 1583 - 1594 .
WANG X Y , ZHANG W M , YAO Z Y , et al . Research progress of reverse water gas shift reaction [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 3 ): 1583 - 1594 .
DU Y X , QIN C , XU Y F , et al . Ni nanoparticles dispersed on oxyg en vacancies-rich CeO 2 nanoplates for enhanced low-temperature CO 2 methanation performance [J ] . Chemical Engineering Journal , 2021 , 418 : 129402 .
DZIADYK E , TRAWCZYNSKI J , SZYJA B M . The pathways of the CO 2 hydrogenation by NiCu/ZnO from DFT molecular dynamics simulations [J ] . Journal of Molecular Graphics and Modelling , 2020 , 100 : 107677 .
李鹏阳 , 王改荣 , 牛佳星 , 等 . 逆水煤气变换反应机理及催化剂研究进展 [J ] . 燃料化学学报(中英文) , 2025 , 53 ( 1 ): 1 - 14 .
LI P Y , WANG G R , NIU J X , et al . Research progress on mechanism and catalysts for reverse water-gas shift reaction [J ] . Journal of Fuel Chemistry and Technology , 2025 , 53 ( 1 ): 1 - 14 .
RA E C , KIM K Y , KIM E H , et al . Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives [J ] . ACS Catalysis , 2020 , 10 ( 19 ): 11318 - 11345 .
LIN L L , LIU J J , LIU X , et al . Reversing sintering effect of Ni particles on γ -Mo 2 N via strong metal support interaction [J ] . Nature Communications , 2021 , 12 : 6978 .
WANG H L , BOOTHARAJU M S , KIM J H , et al . Synergistic interactions of neighboring platinum and iron atoms enhance reverse water gas shift reaction performance [J ] . Journal of the American Chemical Society , 2023 , 145 ( 4 ): 2264 - 2270 .
QUINDIMIL A , DE-LA-TORRE U , PEREDA-AYO B , et al . Effect of metal loading on the CO 2 methanation: A comparison between alumina supported Ni and Ru catalysis [J ] . Catalysis Today , 2020 , 356 : 419 - 432 .
LIAO W Q , TANG C , ZHANG Z H , et al . Tuning activity and selectivity of CO 2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts [J ] . Journal of Catalysis , 2022 , 407 : 126 - 140 .
GUO J X , WANG Z Y , LI J L , et al . In-Ni intermetallic compounds derived from layered double hydroxides as efficient catalysts toward the reverse water gas shift reaction [J ] . ACS Catalysis , 2022 , 12 ( 7 ): 4026 - 4036 .
YUAN H J , ZHU X L , HAN J Y , et al . Rhenium-promoted selective CO 2 methanation on Ni-based catalyst [J ] . Journal of CO 2 Utilization , 2018 , 26 : 8 - 18 .
WANG Y N , FENG K , TIAN J M , et al . Atomically dispersed Zn-stabilized Ni δ + enabling tunable selectivity for CO 2 hydrogenation [J ] . ChemSusChem , 2022 , 15 ( 7 ): e202102439 .
WANG L C , KHAZZNEH T , WIDMANN D , et al . TAP reactor studies of the oxidizing capability of CO 2 on a Au/CeO 2 catalyst—A first step toward identifying a redox mechanism in the reverse water-gas shift reaction [J ] . Journal of Catalysis , 2013 , 301 : 20 - 30 .
LIU Y X , LI L W , ZHANG R Y , et al . Synergetic enhancement of activity and selectivity for reverse water gas shift reaction on Pt-Re/SiO 2 catalysts [J ] . Journal of CO 2 Utilization , 2022 , 63 : 10212 .
ZHAO K C , WANG W H , ZHEN H L . Highly efficient Ni/ZrO 2 catalysts prepared via combustion method for CO 2 methanation [J ] . Journal of CO 2 Utilization , 2016 , 16 : 236 - 244 .
GOGUET A , MEUNIER F , BREEN J , et al . Study of the origin of the deactivation of a Pt/CeO 2 catalyst during reverse water gas shift (RWGS) reaction [J ] . Journal of Catalysis , 2004 , 226 ( 2 ): 382 - 392 .
DAE H K , SANG W H , HYE S Y , et al . Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability [J ] . Journal of Industrial and Engineering Chemistry , 2015 , 23 : 67 - 71 .
SIAKAVELAS G I , CHARISIOU N D , ALKHOORI S , et al . Highly selective and stable nickel catalysts supported on ceria promoted with Sm 2 O 3 , Pr 2 O 3 and MgO for the CO 2 methanation reaction [J ] . Applied Catalysis B: Environmental , 2021 , 282 : 119562 .
MA Y , LIU J , CHU M , et al . Cooperation between active metal and basic support in Ni‑based catalyst for low‑temperature CO 2 methanation [J ] . Catalysis Letters , 2020 , 150 : 1418 - 1426 .
SIANG T J , JALIL A A , FATAH N A A , et al . Tailoring Rh content on dendritic fibrous silica alumina catalyst for enhanced CO 2 capture in catalytic CO 2 methanation [J ] . Journal of Environmental Chemical Engineering , 2021 , 9 ( 1 ): 104616 .
AITBEKOVE A , WU L H , WRASMAN C J , et al . Low-temperature restructuring of CeO 2 -supported Ru nanoparticles determines selectivity in CO 2 catalytic reduction [J ] . Journal of the American Chemical Society , 2018 , 140 ( 42 ): 13736 - 13745 .
HAO Z W , SHEN J D , LIN S X , et al . Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO 2 methanation over ceria supported Ni [J ] . Applied Catalysis B: Environmental , 2021 , 286 : 119922 .
ZHENG H , LIAO W Q , DING J Q , et al . Unveiling the key factors in determining the activity and selectivity of CO 2 hydrogenation over Ni/CeO 2 catalysts [J ] . ACS Catalysis , 2022 , 12 ( 24 ): 15451 - 15462 .
ZHOU G L , WU T , XIE H M , et al . Effects of structure on the carbon dioxide methanation performance of Co-based catalysts [J ] . Internation Journal of Hydrogen Energy , 2013 , 38 : 10012 - 10018 .
LIANG H J , ZHANG B , GAO P , et al . Strong Co—O—Si bonded ultra-stable single atom Co/SBA-15 catalyst for selective hydrogenation of CO 2 to CO [J ] . Chem Catalysis , 2022 , 2 ( 3 ): 610 - 621 .
WANG M R , ZHANG G H , ZHU J , et al . Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO 2 hydrogenation [J ] . Chemical Engineering Journal , 2022 , 446 : 137217 .
MATSUO H , KOBAYASHI M , NANIWA S , et al . Hydrogenation of CO 2 over Mn-substituted SrTiO 3 based on the reverse Mars-van Krevelen mechanism [J ] . Journal of Physical Chemistry C , 2023 , 127 ( 19 ): 8946 - 8952 .
MAKDEE A , KIDKHUNTHOD P , POO-ARPON Y , et al . Enhanced CH 4 selectivity for CO 2 methanation over Ni-TiO 2 by addition of Zr promoter [J ] . Journal of Environmental Chemical Engineering , 2022 , 10 ( 3 ): 107710 .
LI R , SHI H , SONG J L , et al . Magnetic dendritic KC C-1 nanosphere-supported cobalt composite as a separable catalyst for hydrogen generation from NaBH 4 hydrolysis [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 65 ): 25315 - 25327 .
DÍEZ-RAMÍREZ J , P. SÁNCHEZ P , KYRIAKOU V , et al . Effect of support nature on the cobalt-catalyzed CO 2 hydrogenation [J ] . Journal of CO 2 Utilization , 2017 , 21 : 562 - 571 .
MUROYAMA H , TSUDA Y , ASAKOSHI T , et al . Carbon dioxide methanation over Ni catalysts supported on various metal oxides [J ] . Journal of Catalysis , 2016 , 343 : 178 - 184 .
KATTAL S , YAN B H , CHEN J G , et al . CO 2 hydrogenation on Pt, Pt/SiO 2 and Pt/TiO 2 : Importance of synergy between Pt and oxide support [J ] . Journal of Catalysis , 2016 , 343 : 115 - 126 .
WANG C F , LU Y L , ZHANG Y , et al . Ru-based catalysts for efficient CO 2 methanation: Synergistic catalysis between oxygen vacancies and basic sites [J ] . Nano Research , 2023 , 16 : 12153 - 12164 .
KATTEL S , LIU P , CHEN J G . Tuning selectivity of CO 2 hydrogenation reactions at the metal/oxide interface [J ] . Journal of the American Chemical Society , 2017 , 139 : 9739 - 9754 .
KHDARY N H , ALAYYAR A S , ALSARHAN L M , et al . Metal oxides as catalyst/supporter for CO 2 capture and conversion, review [J ] . Catalysts , 2022 , 12 : 300 .
JOMJAREE T , SINTUYA P , SRIFA A , et al . Catalytic performance of Ni catalysts supported on CeO 2 with different morphologies for low-temperature CO 2 methanation [J ] . Catalysis Today , 2021 , 375 : 234 - 244 .
WANG F , LI C M , ZHANG X Y , et al . Catalytic behavior of supported Ru nanoparticles on the {100}, {110} and {111} facet of CeO 2 [J ] . Journal of Catalysis , 2015 , 329 : 177 - 186 .
DU X R , TANG H L , QIAO B T . Oxidative strong metal-support interactions [J ] . Catalysts , 2021 , 11 : 896 .
TAYLOR W F , YATES D J C , SINFELT J H . Catalysis over supported metals. II. The effect of the support on the catalytic activity of nickel for ethane hydrogenolysis [J ] . The Journal of Physical Chemistry , 1964 , 68 ( 10 ): 2962 - 2966 .
GUO W , ZHAO G Q , HUANG Z X , et al . Strong metal-support interaction triggered by molten salts [J ] . Angewandte Chemie International Edition , 2024 , 138 : e202414516 .
DAI Y H , XU M , WANG Q J , et al . Enhanced activity and stability of Ni/La 2 O 2 CO 3 catalyst for CO 2 methanation by metal-carbonate interaction [J ] . Applied Catalysis B: Environmental , 2020 , 277 : 119271 .
LIAO W Q , YUE M N , CHEN J Y , et al . Decoupling the interfacial catalysis of CeO 2 ‑supported Rh catalysts tuned by CeO 2 morphology and Rh particle size in CO 2 hydrogenation [J ] . ACS Catalysis , 2023 , 13 ( 8 ): 5767 - 5779 .
TAUSTER S J , FUNG S C . Strong metal-support interactions: Occurrence binary oxides of groups IIA-VB [J ] . Journal of Catalysis , 1978 , 55 ( 1 ): 29 - 35 .
REN D D , DING J Q , TANG C , et al . Titania-crystal-phase-engineered strong metal-support interactions and catalysis in CO 2 hydrogenation [J ] . Molecular Catalysis , 2024 , 560 : 114122 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构