浏览全部资源
扫码关注微信
1.宁夏大学 化学化工学院 省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏 银川 750021
2.宁夏大学 材料与新能源学院,宁夏 银川 750021
张雪建(2001—),硕士研究生,研究方向为CO加氢定向转化,E-mail:zxj010804@163.com。
王康洲(1992—),博士,副教授,研究方向为低碳资源催化转化,E-mail:kangzhou_wang@163.com;
张建利(1980—),博士,研究员,研究方向为碳一化学,E-mail:zhangjl@nxu.edu.cn。
收稿日期:2024-09-26,
修回日期:2024-10-26,
纸质出版日期:2025-05-25
移动端阅览
张雪建,王舜,张帅等.PFTS改性Fe3O4@SiO2催化剂对费托合成产物分布的影响[J].低碳化学与化工,2025,50(05):93-100.
ZHANG Xuejian,WANG Shun,ZHANG Shuai,et al.Effect of PFTS modified Fe3O4@SiO2 catalysts on product distribution in Fischer-Tropsch synthesis[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):93-100.
张雪建,王舜,张帅等.PFTS改性Fe3O4@SiO2催化剂对费托合成产物分布的影响[J].低碳化学与化工,2025,50(05):93-100. DOI: 10.12434/j.issn.2097-2547.20240400.
ZHANG Xuejian,WANG Shun,ZHANG Shuai,et al.Effect of PFTS modified Fe3O4@SiO2 catalysts on product distribution in Fischer-Tropsch synthesis[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):93-100. DOI: 10.12434/j.issn.2097-2547.20240400.
经费托合成路线,通过CO加氢制取高附加值化学品是实现煤炭清洁高效利用的重要途径之一。然而在生成烃类的同时,会副产大量的H
2
O。H
2
O氧化活性中心导致反应速率降低,同时会促进水煤气变换(WGS)反应正向进行,产生大量CO
2
,碳利用效率降低。且费托合成产物中初级烯烃易再吸附发生二次加氢反应,导致烯烃选择性下降。基于费托合成产物分布的特点,通过调节Fe基催化剂的表面亲疏性,可以实现对产物的调控。采用溶剂热法、Stöber法制备了不同壳层厚度的Fe
3
O
4
@SiO
2
催化剂并以全氟癸基三乙氧基硅烷(PFTS)为改性剂制备了具有疏水疏油(以下简称“双疏”)性质的Fe
3
O
4
@SiO
2
-3-PFTS催化剂,探究了表面壳层厚度和双疏改性对催化剂活性和产物分布的影响。采用SEM、TEM、FT-IR、XRD和H
2
-TPR等方法对催化剂进行了表征,并在300 ℃、1.5 MPa、气体空速3000 h
-1
、
V
(H
2
):
V
(CO) = 2:1条件下进行了催化剂催化性能测试。结果表明,制备的催化剂核壳结构完整,壳层厚度均匀,Fe
3
O
4
@SiO
2
-3-PFTS催化剂具备良好的双疏性。随着SiO
2
壳层厚度增大,初级烯烃二次加氢反应增强,显著抑制了重烃生成,碳原子数为2~4的烷烃(
<math id="M1"><msubsup><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81437011&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81437012&type=
3.21733332
~
<math id="M2"><msubsup><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81437006&type=
3.47133350
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81437014&type=
3.21733332
)选择性从21.5%(Fe
3
O
4
)增大至46.8%(Fe
3
O
4
@SiO
2
-3),碳原子数大于等于5的烃(C
5+
)选择性从47.7%(Fe
3
O
4
)减小至21.5%(Fe
3
O
4
@SiO
2
-3)。Fe
3
O
4
@SiO
2
-3-PFTS催化剂抑制了WGS反应正向进行以及初级烯烃二次加氢反应,反应12 h后CO
2
选择性为14.2%,碳原子数为2~4的烯烃(C
2
=~C
4
=)选择性为19.7%,C
2
~
C
4
产物烯烷选择性比为0.68,产物分布得到了调控。
One of important ways to achieve clean and efficient utilization of coal is through Fischer-Tropsch synthesis (FTS) to prepare high value-added chemicals via CO hydrogenation. However
while generating hydrocarbons
a large amount of H
2
O is also produced as by-product. H
2
O will oxidize the active center
leading to a decrease in reaction rate
and promote the water gas shift (WGS) reaction
generating a large amount of CO
2
and reducing the efficiency of carbon utilization. At the same time
the primary olefins in the FTS products are easy to be re-adsorbed for secondary hydrogenation reactions
decreasing the selectivity of olefins. Based on the characteristics of the FTS product distribution
the control of products can be achieved by adjusting the surface hydrophilicity of Fe-based catalysts. Fe
3
O
4
@SiO
2
catalysts with different shell thicknesses were produced by solvothermal me
thod and Stöber methods
and Fe
3
O
4
@SiO
2
-3-PFTS catalyst with hydrophobic and oleophobic (hereinafter referred to as “amphiphobic”) properties were prepared by perfluorodecyltriethoxysilane (PFTS) as a modifier. The effects of the shell thickness and amphiphobic modification on the catalyst activity and FTS product distribution were investigated. The catalysts were characterized by SEM
TEM
FT-IR
XRD
H
2
-TPR and so on
and their catalytic performances were tested under the conditions of 300 ℃
1.5 MPa
gas space velocity of 3000 h
-1
and
V
(H
2
):
V
(CO) = 2:1. The results show that the prepared catalysts have complete core-shell structures and uniform shell thickness. Fe
3
O
4
@SiO
2
-3-PFTS catalyst exhibits good amphiphobic properties. With the increase of the thickness of SiO
2
shell layer
the secondary hydrogenation reaction of primary olefins is enhanced
and the generation of heavy hydrocarbons is significantly inhibited. The selectivity of alkanes with two to four carbon atoms (
<math id="M3"><msubsup><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81437015&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81437016&type=
3.13266683
~
<math id="M4"><msubsup><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81437026&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=81437027&type=
3.13266683
) increases from 21.5% (Fe
3
O
4
) to 46.8% (Fe
3
O
4
@SiO
2
-3)
and the selectivity of hydrocarbons with five or more carbon atoms (C
5+
) decreases from 47.7% (Fe
3
O
4
) to 21.5% (Fe
3
O
4
@SiO
2
-3). Fe
3
O
4
@SiO
2
-3-PFTS catalyst inhibits the WGS reaction and secondary hydrogenation of primary olefins. After reaction for 12 h
the selectivity of CO
2
is 14.2%
and the selectivity of olefins with two to four carbon atoms (C
2
=~C
4
=) is 19.7%
and selectivity ratio of olefins and alkanes in C
2
~C
4
products is 0.68. The product distribution is regulated.
苏俊超 , 刘勒 , 郝庆兰 , 等 . 费托合成反应机理研究进展 [J ] . 燃料化学学报(中英文) , 2023 , 51 ( 11 ): 1565 - 1575 .
SU J C , LIU L , HAO Q L , et al . Research progress of Fischer-Tropsch synthesis reaction mechanism [J ] . Journal of Fuel Chemistry and Technology , 2023 , 51 ( 11 ): 1565 - 1575 .
李自琴 , 王康洲 , 高新华 , 等 . CO 2 加氢制高碳 α -烯烃Fe基催化剂研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 11 - 21 .
LI Z Q , WANG K Z , GAO X H , et al . Research progress on Fe-based catalysts for CO 2 hydrogenation to high carbon α -olefins [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 11 - 21 .
GAO Y L , SHAO L , YANG S Q , et al . Recent advances in iron-based catalysts for Fischer-Tropsch to olefins reaction [J ] . Catalysis Communication , 2023 , 181 : 106720 .
ZHANG Q H , KANG J C , WANG Y . Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity [J ] . ChemCatChem , 2010 , 2 ( 9 ): 1030 - 1058 .
YANG Y , XIANG W H , TIAN L , et al . Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO 2 [J ] . Applied Catalysis A: General , 2005 , 284 ( 1/2 ): 105 - 122 .
ZHANG Y , QING H , WANG H , et al . Comprehensive understanding of SiO 2 -promoted Fe Fischer-Tropsch synthesis catalysts: Fe-SiO 2 interaction and beyond [J ] . Catalysis Today , 2021 , 368 : 96 - 105 .
SHI L H , LI D B , SUN Y H , et al . The modification of SiO 2 by various organic groups and its influence on the properties of cobalt-based catalysts for Fischer-Tropsch synthesis [J ] . Fuel Processing Technology , 2010 , 91 ( 4 ): 394 - 398 .
YANG C , ZHAO H B , MA D , et al . Fe 5 C 2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis [J ] . Journal of the American Chemical Society , 2012 , 134 ( 38 ): 15814 - 15821 .
GUAN Z , ZHAO W T , WANG B J , et al . Syngas-to-hydrocarbons on the transition metal catalysts: Revealing the function of surface hydroxyl intermediate served as CO-adsorbed promoter or hydrogenating species [J ] . Fuel , 2023 , 343 : 127967 .
FENG J , LI J J , PAN X L , et al . Selective conversion of syngas to light olefins [J ] . Science , 2016 , 351 ( 6277 ): 1065 - 1068 .
BUKUR D B , TODIC B , ELBASHIR N . Role of water-gas-shift reaction in Fischer-Tropsch synthesis on iron catalysts: A review [J ] . Catalysis Today , 2016 , 275 : 66 - 75 .
FELLENZ N A , BENGOA J F , CAGNOLI M V , et al . Changes in the surface hydrophobicity degree of a MCM-41 used as iron support: A pathway to improve the activity and the olefins production in the Fischer-Tropsch synthesis [J ] . Journal of Porous Materials , 2017 , 24 ( 4 ): 1025 - 1036 .
YU X F , ZHANG J L , WANG X , et al . Fischer-Tropsch synthesis over methyl modified Fe 2 O 3 @SiO 2 catalysts with low CO 2 selectivity [J ] . Applied Catalysis B: Environmental , 2018 , 232 : 420 - 428 .
XU Y F , LI X Y , GAO J H . et al . A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products [J ] . Science , 2021 , 371 ( 6529 ): 610 - 613 .
XU Y F , ZHANG Z X , WU K , et al . Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer-Tropsch synthesis [J ] . Nature Communications , 2024 , 15 : 7099 .
TODIC B , NOWICKI L , NIKACEVIC N , et al . Fischer-Tropsch synthesis product selectivity over an industrial iron-based catalyst: Effect of process conditions [J ] . Catalysis Today , 2016 , 261 : 28 - 39 .
OLUSOLA O O , BISWAJIT C , MESUBI B , et al . Reflections on the chemistry of the Fischer-Tropsch synthesis [J ] . RSC Advances , 2012 , 2 ( 19 ): 7347 - 7366 .
YAN H J , CHEN Y , XU S . Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H 2 production from water under visible light [J ] . International Journal of Hydrogen Energy , 2012 , 37 ( 1 ): 125 - 133 .
向洋洋 , 薛淏 , 郑朝晖 , 等 . “梳形”含氟功能聚合物的构建与应用 [J ] . 高分子通报 , 2023 , 36 ( 3 ): 298 - 309 .
XIANG Y Y , XUE H , ZHENG Z H , et al . Construction and application of “comb-shaped” fluorine-containing functional polymers [J ] . Polymer Bulletin , 2023 , 36 ( 3 ): 298 - 309 .
XIAO X Y , WANG Y . Emulsion copolymerization of fluorinated acrylate in the presence of a polymerizable emulsifier [J ] . Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009 , 348 ( 1/2/3 ): 151 - 156 .
FANG C , XUE J J . Preparation and characterization of polyacrylate emulsion pressure-sensitive adhesives with various lengths of fluorinated side chains [J ] . Journal of Adhesion Science and Technology , 2022 , 36 ( 10 ): 1041 - 1059 .
YAN B , MA L , GAO X H , et al . Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer-Tropsch synthesis [J ] . Applied Catalysis A: General , 2019 , 585 : 117184 .
STÖBER W , FINK A , BOHN E . Controlled growth of monodisperse silica spheres in the micron size range [J ] . Journal of Colloid and Interface Science , 1968 , 26 ( 1 ): 62 - 69 .
陈加扬 , 陈杰 , 李玉峰 , 等 . 疏水二氧化硅球调控铁基催化剂在常压二氧化碳费托合成反应中的性能研究 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 32 - 40 .
CHEN J Y , CHEN J , LI Y F , et al . Study on performance of iron-based catalysts regulated by hydrophobic silica spheres in Fischer-Tropsch synthesis of carbon dioxide at atmospheric pressure [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 32 - 40 .
周运炉 . 介孔SiO 2 /致密SiO 2 /Fe 3 O 4 空心微球制备及性能研究 [D ] . 北京 : 北京工业大学 , 2017 .
ZHOU Y L . A mesoporous SiO 2 /dense SiO 2 /Fe 3 O 4 hollow microsphere: Synthesis and property research [D ] . Beijing : Beijing University of Technology , 2017 .
LIU Y X , LIU W L , WANG G L , et al . A facile one-step approach to superhydrophilic silica film with hierarchical structure using fluoroalkylsilane [J ] . Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2018 , 539 ( 20 ): 109 - 115 .
张庆旭 , 王康洲 , 李财虎 , 等 . 表面改性Fe/CS调控CO加氢产物分布研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 18 - 27 .
ZHANG Q X , WANG K Z , LI C H , et al . Study of surface-modified Fe/CS regulates CO hydrogenation product distributions [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 18 - 27 .
ZHANG Q H , DENG W P , WANG Y . Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis [J ] . Journal of Energy Chemistry , 2013 , 22 ( 1 ): 27 - 38 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构