浏览全部资源
扫码关注微信
1.中国科学院 山西煤炭化学研究所 煤炭高效低碳利用全国重点实验室,山西 太原 030001
2.中国科学院大学,北京 100049
3.中科合成油技术股份有限公司,北京 101407
4.太原理工大学 化学工程与技术学院, 山西 太原 030024
卫丽莎(1995—),博士研究生,研究方向为分子筛催化, E-mail:weilisha18@mails.ucas.ac.cn。
相宏伟(1964—),博士,研究员,研究方向为多相催化,E-mail:hwxiang@sxicc.ac.cn。
收稿日期:2024-09-17,
修回日期:2024-10-09,
纸质出版日期:2025-06-25
移动端阅览
卫丽莎,王慧,董奇等.不同酸强度HY分子筛对正己烷裂解机理影响的理论研究[J].低碳化学与化工,2025,50(06):52-62.
WEI Lisha,WHANG Hui,DONG Qi,et al.Theoretical study on effects of HY zeolites with different acid strengths on cracking mechanism of n-hexane[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(06):52-62.
卫丽莎,王慧,董奇等.不同酸强度HY分子筛对正己烷裂解机理影响的理论研究[J].低碳化学与化工,2025,50(06):52-62. DOI: 10.12434/j.issn.2097-2547.20240391.
WEI Lisha,WHANG Hui,DONG Qi,et al.Theoretical study on effects of HY zeolites with different acid strengths on cracking mechanism of n-hexane[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(06):52-62. DOI: 10.12434/j.issn.2097-2547.20240391.
能源需求增长与化石燃料枯竭促使重质原油的高效转化成为研究重点,烷烃裂解技术可将长链烷烃转化为短链烃产物,从而提升长链烷烃的经济价值。HY分子筛因具有比表面积较高和酸强度较适宜的优点,是目前常用的烷烃催化裂解催化剂之一,但HY分子筛酸强度对烷烃裂解机理影响的理论研究还比较少。采用周期密度泛函理论计算方法,以丙烷和正己烷为模型底物,研究了不同酸强度(Al取代结构分别为1Al取代、3Al取代和6Al取代,相应
n
(Si)/
n
(Al)分别为47、15和7)的HY分子筛对烷烃裂解机理的影响,并分析了正己烷中不同C—C键断裂的难易程度。结果表明,随着HY分子筛Brønsted酸强度增强,丙烷和正己烷质子化反应的表观吉布斯自由能垒降低,HY分子筛的烷烃裂解反应催化活性增强。正己烷中3种C—C键的断裂难度由易到难分别为C
3
—C
4
键、C
2
—C
3
键和C
1
—C
2
键。
Growth of energy demand and depletion of fossil fuels have made efficient conversion of heavy crude oil a research focus. Alkane cracking technology can convert long-chain alkanes into short-chain hydrocarbon products
thereby increasing the economic value of long-chain alkanes. HY zeolites are one of the commonly used catalysts for alkane catalytic cracking due to their advantages of high specific surface area and suitable acid strength. However
there are relatively few theoretical studies on the effect of HY zeolites acid strengths on alkane cracking mechanism. Using periodic density functional theory calculation method
with propane and
n
-hexane as model substrates
the effects of HY zeolites with different acid strengths (Al substitution structures are 1Al substitution
3Al substitution and 6Al substitution
and the corresponding
n
(Si)/
n
(Al) are 47
15 and 7
respectively) on the alkane cracking mechanism were
systematically studied
and the difficulty of breaking different C—C bonds in
n
-hexane was analyzed. The results show that with the increase of the Brønsted acid strength of HY zeolites
the apparent Gibbs free energy barrier of the protonation reaction of propane and
n
-hexane decreases
and the catalytic activity of HY zeolites in alkane cracking reaction is enhanced. The difficulty of breaking the three C—C bonds in
n
-hexane from easy to difficult are C
3
—C
4
bond
C
2
—C
3
bond and C
1
—C
2
bond.
MARTÍNEZ C , CORMA A . Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes [J ] . Coordination Chemistry Reviews , 2011 , 255 : 1558 - 1580 .
RIGUTTO M S , VEEN R V , HUVE L . Zeolites in hydrocarbon processing [J ] . Studies in Surface Science and Catalysis , 2007 : 855-XXVI.
CEJKA J , CORMA A , ZONES S . Zeolites and catalysis: Synthesis, reactions and applications [M ] . Weinheim : John Wiley & Sons , 2010 .
CORMA A , MARTÍNEZ A . Zeolites in refining and petrochemistry [J ] . Studies in Surface Science and Catalysis , 2005 , 157 : 337 - 366 .
PRIMO A , GARCIA H . Zeolites as catalysts in oil refining [J ] . Chemical Society Reviews , 2014 , 43 ( 22 ): 7548 - 7561 .
VOGT E T , WECKHUYSEN B M . Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis [J ] . Chemical Society Reviews , 2015 , 44 ( 20 ): 7342 - 7370 .
INAGAKI S , SHINODA S , HAYASHI S , et al . Improvement in the catalytic properties of ZSM-5 zeolite nanoparticles via mechanochemical and chemical modifications [J ] . Catalysis Science & Technology , 2016 , 6 ( 8 ): 2598 - 2604 .
GONG T , QIN L J , LU J , et al . ZnO modified ZSM-5 and Y zeolites fabricated by atomic layer deposition for propane conversion [J ] . Physical Chemistry Chemical Physics , 2016 , 18 ( 1 ): 601 - 614 .
BORONAT M , CORMA A . Factors controlling the acidity of zeolites [J ] . Catalysis Letters , 2015 , 145 : 162 - 172 .
VAN BOKHOVEN J A , WILLIAMS B A , JI W , et al . Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption [J ] . Journal of Catalysis , 2004 , 224 ( 1 ): 50 - 59 .
吴一鹏 , 段绘州 , 任朝秀 , 等 . 分子筛骨架铝原子分布研究进展 [J ] . 石油炼制与化工 , 2024 , 55 ( 2 ): 36 - 42 .
WU Y P , DUAN H Z , REN C X . Research progress of molecular sieve skeleton aluminum atom distribution [J ] . Petroleum Processing and Petrochemicals , 2024 , 55 ( 2 ): 36 - 42 .
高会奇 , 蔺志平 , 刘恺 , 等 . HZSM-5分子筛固体酸催化合成邻苯二甲酸二丁酯的研究 [J ] . 当代化工研究 , 2023 , ( 11 ): 184 - 187 .
GAO H Q , LIN Z P , LIU K , et al . Study on the synthesis of dibutyl phthalate catalyzed by solid acid of HZSM-5 [J ] . Modern Chemical Research , 2023 , ( 11 ): 184 - 187 .
徐德义 . 失活钛硅分子筛催化C 5 =裂解反应的研究 [D ] . 上海 : 华东师范大学 , 2023 .
XU D Y . Study on the deactivated titanosilicate zeolite as a catalyst for cracking of pentene [D ] . Shanghai : East China Normal University , 2023 .
伊凤娇 , 陈会民 , 杨勇 , 等 . 原位DRIFTS研究分子筛Brønsted酸和Lewis酸催化戊烯转化的作用机理 [J ] . 燃料化学学报(中英文) , 2023 , 51 ( 5 ): 625 - 634 .
YI F J , CHEN H M , YANG Y , et al . Mechanisms of Brønsted and Lewis acids of zeolite on pentenes conversion by in situ DRIFTS [J ] . Journal of Fuel Chemistry and Technology , 2023 , 51 ( 5 ): 625 - 634 .
褚格 . 不同孔结构和酸性能分子筛对异丁烷/丁烯烷基化反应性能的影响 [D ] . 太原 : 太原理工大学 , 2022 .
CHU G . Effects of different pore structures and acidity zeolites on the alkylation of isobutane/butene [D ] . Taiyuan : Taiyuan University of Technology , 2022 .
宫寒月 , 王厚光 , 徐成斌 , 等 . β 分子筛的酸性和孔道对 α- 蒎烯催化转化性能的影响 [J ] . 大学化学 , 2022 , 37 ( 5 ): 239 - 247 .
GONG H Y , WANG H G , XU C B , et al . Effect of acid property and pore structure of zeolite β for isomerization of α -pinene [J ] . University Chemistry , 2022 , 37 ( 5 ): 239 - 247 .
徐如人 , 庞文琴 , 霍启升 . 分子筛与多孔材料化学 [M ] . 北京 : 科学出版社 , 2004 .
XU R R , PANG W Q , HUO Q S . Molecular sieve and porous material chemistry [M ] . Beijing : Science Press , 2004 .
郑安民 . 分子筛催化理论计算: 从基础到应用 [M ] . 北京 : 科学出版社 , 2020 .
ZHENG A M . Theoretical calculation of molecular sieve catalysis: From basic to application [M ] . Beijing : Science Press , 2020 .
HOČEVAR B , GRILC M , HUŠ M , et al . Mechanism, ab initio calculations and microkinetics of hydrogenation, hydrodeoxygenation, double bond migration and cis-trans isomerisation during hydrotreatment of C 6 secondary alcohol species and ketones [J ] . Applied Catalysis B: Environmental , 2017 , 218 : 147 - 162 .
HUNTER K C , SEITZ C , EAST A L . A mechanistic study of the Brønsted-acid catalysis of n -hexane → propane + propene, featuring carbonium ions [J ] . The Journal of Physical Chemistry A , 2003 , 107 ( 1 ): 159 - 168 .
HAAG W , DESSAU R , LAGO R . Kinetics and mechanism of paraffin cracking with zeolite catalysts [M ] . Amsterdam : Elsevier , 1991 .
KAZANSKY V , SENCHENYA I , FRASH M , et al . A quantum-chemical study of adsorbed nonclassical carbonium ions as active intermediates in catalytic transformations of paraffins. I. Protolytic cracking of ethane on high silica zeolites [J ] . Catalysis Letters , 1994 , 27 : 345 - 354 .
KAZANSKY V , FRASH M , VAN SANTEN R . A quantum-chemical study of adsorbed nonclassical carbonium ions as active intermediates in catalytic transformations of paraffins. II. Protolytic dehydrogenation and hydrogen-deuterium hetero-isotope exchange of paraffins on high-silica zeolites [J ] . Catalysis Letters , 1994 , 28 : 211 - 222 .
BLASZKOWSKI S , VAN SANTEN R . Quantum chemical studies of zeolite proton catalyzed reactions [J ] . Topics in Catalysis , 1997 , 4 ( 1 ): 145 - 156 .
CHU Y Y , HAN B , FANG H J , et al . Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: A theoretical calculation study [J ] . Microporous and Mesoporous Materials , 2012 , 151 : 241 - 249 .
LIU C , LI G N , HENSEN E J , et al . Relationship between acidity and catalytic reactivity of faujasite zeolite: A periodic DFT study [J ] . Journal of Catalysis , 2016 , 344 : 570 - 577 .
SILAGHI M-C , CHIZALLET C , SAUER J , et al . Dealumination mechanisms of zeolites and extra-framework aluminum confinement [J ] . Journal of Catalysis , 2016 , 339 : 242 - 255 .
INJONGKOL Y , KHEMTHONG P , YODSIN N , et al . Combined in situ XAS and DFT studies on the role of Pt in zeolite-supported metal catalysts for selective n -hexane isomerization [J ] . Fuel , 2022 , 314 : 123099 .
FU J , FENG X , LIU Y B , et al . Mechanistic insights into the pore confinement effect on bimolecular and monomolecular cracking mechanisms of n -octane over HY and HZSM-5 zeolites: A DFT study [J ] . The Journal of Physical Chemistry C , 2018 , 122 ( 23 ): 12222 - 12230 .
SWISHER J A , HANSEN N , MAESEN T , et al . Theoretical simulation of n -alkane cracking on zeolites [J ] . The Journal of Physical Chemistry C , 2010 , 114 ( 22 ): 10229 - 10239 .
NIWA M , SUZUKI K , MORISHITA N , et al . Dependence of cracking activity on the Brønsted acidity of Y zeolite: DFT study and experimental confirmation [J ] . Catalysis Science & Technology , 2013 , 3 ( 8 ): 1919 - 1927 .
LIU P , ZHANG J J , PENG S Z , et al . Thermodynamic insight into thermal cracking of n -hexane in the H-FAU zeolite [J ] . The Journal of Physical Chemistry C , 2022 , 126 ( 48 ): 20411 - 20422 .
ROSENBACH JR N , MOTA C J . A DFT-ONIOM study on the effect of extra-framework aluminum on USY zeolite acidity [J ] . Applied Catalysis A: General , 2008 , 336 ( 1/2 ): 54 - 60 .
HILL J R , FREEMAN C M , DELLEY B . Bridging hydroxyl groups in faujasite: Periodic vs cluster density functional calculations [J ] . The Journal of Physical Chemistry A , 1999 , 103 ( 19 ): 3772 - 3777 .
SASTRE G , FORNES V , CORMA A . Preferential siting of bridging hydroxyls and their different acid strengths in the two-channel system of MCM-22 zeolite [J ] . The Journal of Physical Chemistry B , 2000 , 104 ( 18 ): 4349 - 4354 .
BOURDILLON G , GUEGUEN C , GUISNET M . Characterization of acid catalysts by means of model reactions: I. Acid strength necessary for the catalysis of various hydrocarbon reactions [J ] . Applied Catalysis , 1990 , 61 ( 1 ): 123 - 139 .
LERCHER J A , JENTYS A , BRAIT A . Catalytic test reactions for probing the acidity and basicity of zeolites [J ] . Acidity and Basicity , 2008 : 153 - 212 .
WEI L S , YANG H , REN P J , et al . Distribution of multiple Al substitution in HY zeolite and Brønsted acid strength: A periodic DFT study [J ] . Microporous and Mesoporous Materials , 2022 , 344 : 112184 .
BUČKO T , BENCO L , HAFNER J , et al . Monomolecular cracking of propane over acidic chabazite: An ab initio molecular dynamics and transition path sampling study [J ] . Journal of Catalysis , 2011 , 279 ( 1 ): 220 - 228 .
COLLINS S J , OMALLEY P J . A theoretical description for the monomolecular cracking of C—C bonds over acidic zeolites [J ] . Journal of Catalysis , 1995 , 153 ( 1 ): 94 - 99 .
CHEN D D , LIU D Y , WEI J , et al . The effect of acid strength on the mechanism of catalytic pyrolysis reaction of n -hexane in ZSM5: A DFT study [J ] . Applied Catalysis A: General , 2023 , 665 : 119389 .
KRESSE G , FURTHMÜLLER J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J ] . Computational Materials Science , 1996 , 6 ( 1 ): 15 - 50 .
KRESSE G , FURTHMÜLLER J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J ] . Physical Review B , 1996 , 54 ( 16 ): 11169 .
BLÖCHL P E . Projector augmented-wave method [J ] . Physical Review B , 1994 , 50 ( 24 ): 17953 .
KRESSE G , JOUBERT D . From ultrasoft pseudopotentials to the projector augmented-wave method [J ] . Physical Review B , 1999 , 59 ( 3 ): 1758 .
PERDEW J P , BURKE K , ERNZERHOF M . Generalized gradient approximation made simple [J ] . Physical Review Letters , 1996 , 77 ( 18 ): 3865 .
PERDEW J P , WANG Y . Accurate and simple analytic representation of the electron-gas correlation energy [J ] . Physical Review B , 1992 , 45 ( 23 ): 13244 .
MONKHORST H J , PACK J D . Special points for Brillouin-zone integrations [J ] . Physical Review B , 1976 , 13 ( 12 ): 5188 .
GRIMME S , ANTONY J , EHRLICH S , et al . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J ] . The Journal of Chemical Physics , 2010 , 132 : 154104 .
SOHN J R , DECANIO S J , FRITZ P O , et al . Acid catalysis by dealuminated zeolite-Y.2. The roles of aluminum [J ] . The Journal of Physical Chemistry , 1986 , 90 : 4847 - 4851 .
ALMUTAIRI S M T , MEZARI B , FILONENKO G A , et al . Influence of extraframework aluminum on the bronsted acidity and catalytic reactivity of faujasite zeolite [J ] . ChemCatChem , 2013 , 5 : 452 - 466 .
SHEPPARD D , XIAO P , CHEMELEWSKI W , et al . A generalized solid-state nudged elastic band method [J ] . The Journal of Chemical Physics , 2012 , 136 : 74103 .
LI X H , LI C Y , ZHANG J F , et al . Effects of temperature and catalyst to oil weight ratio on the catalytic conversion of heavy oil to propylene using ZSM-5 and USY catalysts [J ] . Journal of Natural Gas Chemistry , 2007 , 16 ( 1 ): 92 - 99 .
WANG V , XU N , LIU J C , et al . VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code [J ] . Computer Physics Communications , 2021 , 267 : 108033 .
STÖCKER M . Gas phase catalysis by zeolites [J ] . Microporous and Mesoporous Materials , 2005 , 82 ( 3 ): 257 - 292 .
BLASZKOWSKI S , NASCIMENTO M , VAN SANTEN R . Activation of C—H and C—C bonds by an acidic zeolite: A density functional study [J ] . The Journal of Physical Chemistry , 1996 , 100 ( 9 ): 3463 - 3472 .
ZHENG X B , BLOWERS P . Reactivity of alkanes on zeolites: A computational study of propane conversion reactions [J ] . The Journal of Physical Chemistry A , 2005 , 109 ( 47 ): 10734 - 10741 .
TRANCA D C , ZIMMERMAN P M , GOMES J , et al . Hexane cracking on ZSM-5 and faujasite zeolites: A QM/MM/QCT study [J ] . The Journal of Physical Chemistry C , 2015 , 119 ( 52 ): 28836 - 28853 .
BORONAT M , VIRUELA P , CORMA A . Ab initio and density-functional theory study of zeolite-catalyzed hydrocarbon reactions: Hydride transfer, alkylation and disproportionation [J ] . Physical Chemistry Chemical Physics , 2000 , 2 ( 14 ): 3327 - 3333 .
DING L H , SITEPU H , AL-BOGAMI S A , et al . Effect of zeolite-Y modification on crude-oil direct hydrocracking [J ] . ACS Omega , 2021 , 6 ( 43 ): 28654 - 28662 .
FERRAZ S G , ZOTIN F M Z , ARAUJO L R R , et al . Influence of support acidity of NiMoS catalysts in the activity for hydrogenation and hydrocracking of tetralin [J ] . Applied Catalysis A: General , 2010 , 384 ( 1/2 ): 51 - 57 .
GUO Y N , JIA H Q , QI J Y , et al . Acid and steric synergies in industrial Y zeolites for 9,10-dihydroanthracene hydrocracking [J ] . Catalysis Communications , 2023 , 177 : 106655 .
KATADA N , NAKATA S , KATO S , et al . Detection of active sites for paraffin cracking on USY zeolite by 27Al MQMAS NMR operated at high magnetic field 16 T [J ] . Journal of Molecular Catalysis A: Chemical , 2005 , 236 ( 1/2 ): 239 - 245 .
KATADA N , KAGEYAMA Y , TAKAHARA K , et al . Acidic property of modified ultra stable Y zeolite: Increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt [J ] . Journal of Molecular Catalysis A: Chemical , 2004 , 211 ( 1/2 ): 119 - 130 .
LIU C , LI G N , HENSEN E J , et al . Nature and catalytic role of extraframework aluminum in faujasite zeolite: A theoretical perspective [J ] . ACS Catalysis , 2015 , 5 ( 11 ): 7024 - 7033 .
BABITZ S , WILLIAMS B , MILLER J , et al . Monomolecular cracking of n -hexane on Y, MOR, and ZSM-5 zeolites [J ] . Applied Catalysis A: General , 1999 , 179 ( 1/2 ): 71 - 86 .
FRASH M , VAN SANTEN R . Quantum-chemical modeling of the hydrocarbon transformations in acid zeolite catalysts [J ] . Topics in Catalysis , 1999 , 9 : 191 - 205 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构