浏览全部资源
扫码关注微信
1.广西大学 机械工程学院,广西 南宁 530004
2.中国石化销售股份有限公司广西石油南宁分公司,广西 南宁 530023
欧镱雯(2001—),硕士研究生,研究方向为气体分离技术,E-mail:956562261@qq.com。
卢苇(1974—),博士,教授,研究方向为能量系统分析及优化,化工机械与设备,E-mail:luwei@gxu.edu.cn。
收稿日期:2024-09-09,
修回日期:2024-11-11,
纸质出版日期:2025-09-25
移动端阅览
欧镱雯,曾成,覃睿等.基于分子交换流的气体分离系统热力学分析[J].低碳化学与化工,2025,50(09):48-56.
OU Yiwen,ZENG Cheng,QIN Rui,et al.Thermodynamic analysis of gas separation system based on molecular exchange flow[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(09):48-56.
欧镱雯,曾成,覃睿等.基于分子交换流的气体分离系统热力学分析[J].低碳化学与化工,2025,50(09):48-56. DOI: 10.12434/j.issn.2097-2547.20240382.
OU Yiwen,ZENG Cheng,QIN Rui,et al.Thermodynamic analysis of gas separation system based on molecular exchange flow[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(09):48-56. DOI: 10.12434/j.issn.2097-2547.20240382.
为提高气体分离过程能量利用效率,提出了一种余热驱动的气体分离系统。该系统由多个分子交换流分离器级联排列组成,并采用努森泵进行连接。引入理想效率和热能利用效率作为评价指标,对系统进行了热力学分析,探讨了余热温度、产品气体目标组分(混合气体中分子质量较小的组分)浓度(物质的量分数),以及混合气体组分分子质量比对系统的影响。结果表明,在330~360 K范围内,热腔温度越高,理想效率越高,热能利用效率越低;360 K时理想效率最高(0.428),比330 K时(0.419)提高了2.1%;360 K时热能利用效率最低(0.307),比330 K时(0.416)降低了26.2%。在0.7~0.9浓度范围内,产品气体目标组分浓度越高,理想效率和热能利用效率均越高;浓度为0.9时理想效率最高(0.428),比浓度为0.7时(0.320)提高了33.8%;浓度为0.9时热能利用效率最高(0.307),比浓度为0.7时(0.219)提高了40.2%。混合气体组分分子质量比越小(He-Ar(10)、He-Ne(5)和Ne-Ar(2)),理想效率和热能利用效率均越低;分子质量比为2时理想效率最低(0.098),比分子质量比为10时(0.518)降低了81.0%;分子质量比为2时热能利用效率最低(0.061),比分子质量比为10时(0.340)降低了82.0%。
To improve the energy utilization efficiency of gas separation processes
a waste heat-driven gas separation system is proposed. This system consists of multiple molecular exchange flow separators arranged in series and connected using Knudsen pumps. Ideal efficiency and thermal energy utilization efficiency were introduced as evaluation indicators for the thermodynamic analysis of the system. The effects of waste heat temperature
target component (the component with the smaller molecular weight in the mixture) concentration (molar fraction) in the product gas and molecular weight ratio of the mixed gas components on the system’s performance were investigated. The results show that within the temperature range of 330 K to 360 K
higher thermal chamber temperatures result in higher ideal efficiencies but lower thermal energy utilization efficiencies. At 360 K
the ideal efficiency (0.428) reaches its maximum
which is 2.1% higher than that at 330 K (0.419)
while the thermal energy utilization efficiency (0.307) is at its minimum
26.2% lower than that at 330 K (0.416). Within the concentration range of 0.7 to 0.9
higher concentrations of the target component result in higher ideal efficiencies and thermal energy utilization efficiencies. At a concentration of 0.9
the ideal efficiency (0.428) is the highest
33.8% higher than that at a concentration of 0.7 (0.320)
while the thermal energy utilization efficiency (0.307) is also the highest
40.2% higher than that at a concentration of 0.7 (0.219). As the molecular weight ratio of the mixed gas components decreases (He-Ar (10)
He-Ne (5)
and Ne-Ar (2))
both ideal efficiency and thermal energy utilization efficiency decrease. At a molecular weight ratio of 2
the ideal efficiency (0.098) is the lowest
81.0% lower than that at a ratio of 10 (0.518)
while the thermal energy utilization efficiency (0.061) is also the lowest
82.0% lower than that at a ratio of 10 (0.340).
陈丽锦 , 邓帅 , 王珺瑶 , 等 . 变温吸附碳捕集系统能效性能对标分析 [J ] . 过程工程学报 , 2021 , 21 ( 10 ): 1225 - 1235 .
CHENG L J , DENG S , WANG J Y , et al . Benchmarking analysis on energy efficiency performance of temperature swing adsorption carbon capture system [J ] . The Chinese Journal of Process Engineering , 2021 , 21 ( 10 ): 1225 - 1235 .
魏昕 , 丁黎明 , 郦和生 , 等 . 膜法氢气分离技术及其在化工领域的应用进展 [J ] . 石油化工 , 2021 , 50 ( 5 ): 472 - 478 .
WEI X , DING L M , LI H S , et al . Hydrogen purification by membrane separation technology and its in chemical industrial application [J ] . Petrochemical Technology , 2021 , 50 ( 5 ): 472 - 478 .
贠延滨 , 陈翠仙 , 马润宇 . 膜分离技术在石油化工领域中的应用 [J ] . 化工新型材料 , 2003 , 31 ( 11 ): 7 - 10 .
YUN Y B , CHEN C X , MA R Y . Application of membrane separation technology in the petrochemical industry [J ] . New Chemical Materials , 2003 , 31 ( 11 ): 7 - 10 .
赵辉 . 气体分离膜技术及其在石油化工领域的应用 [J ] . 石油化工 , 2023 , 52 ( 3 ): 412 - 417 .
ZHAO H . Gas separation membrane technology and its application in petrochemical industry [J ] . Petrochemical Technology , 2023 , 52 ( 3 ): 412 - 417 .
LIU J X . China’s renewable energy law and policy: A critical review [J ] . Renewable and Sustainable Energy Reviews , 2019 , 99 : 212 - 219 .
CHEN H , WANG Y H , AN L M , et al . Performance evaluation of a novel design for the waste heat recovery of a cement plant incorporating a coal-fired power plant [J ] . Energy , 2022 , 246 : 123420 .
TAKATA S , SUGIMOTO H , KOSUGE S . Gas separation by means of the Knudsen compressor [J ] . European Journal of Mechanics B-Fluids , 2007 , 26 ( 2 ): 155 - 181 .
NARIS S , VALOUGEORGIS D , KALEMPA D , et al . Gaseous mixture flow between two parallel plates in the whole range of the gas rarefaction [J ] . Physica A: Statistical Mechanics and Its Applications . 2004 , 336 ( 3/4 ): 294 - 318 .
SUGIMOTO H . Experiment on the gas separation effect of the pump driven by the thermal edge flow [C ] // AIP Conference Proceedings . New York : American Institute of Physics , 2009 , 1084 : 1123 - 1128 .
MENG S D , LU W , ZENG C , et al . Construction and analyses of molecular exchange fow for gas mixturesin microchannels [J ] . Chemical Papers , 2022 , 76 ( 5 ): 3185 - 3199 .
NAKAYE S , SUGIMOTO H , GUPTA N K , et al . Thermally enhanced membrane gas separation [J ] . European Journal of Mechanics-B/Fluids , 2015 , 49 : 36 - 49 .
NAKAYE S , SUGIMOTO H . Demonstration of a gas separator composed of Knudsen pumps [J ] . Vacuum , 2016 , 125 : 154 - 164 .
MATSUMOTO M , NAKAYE S , SUGIMOTO H . Gas separation by the molecular exchange flow through micropores of the membrane [C ] // AIP Conference Proceedings . New York : American Institute of Physics , 2016 , 1786 ( 1 ): 080011 .
CHEN L J , DENG S , ZHAO R K , et al . Temperature swing adsorption for CO 2 capture: Thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger [J ] . Applied Thermal Engineering , 2021 , 199 : 117538 .
JOSS L , GAZZANI M , MAZZOTTI M . Rational design of temperature swing adsorption cycles for post-combustion CO 2 capture [J ] . Chemical Engineering Science , 2017 , 158 : 381 - 394 .
曾成 . 分子交换式分离系统的能效研究 [D ] . 南宁 : 广西大学 , 2023 .
ZENG C . Study on energy efficiency of molecular exchange separation system [D ] . Nanning : Guangxi University , 2023 .
张军 . 地热能、余热能与热泵技术 [M ] . 北京 : 化学工业出版社 , 2014 .
ZHANG J . Geothermal energy, waste heat energy and heat pump technology [M ] . Beijing : Chemical Industry Press , 2014 .
WANG X W , SUN T Y , ZHANG W Q , et al . Knudsen pumps: A review [J ] . Microsystems & Nanoengineering , 2020 , 6 : 1 - 28 .
KOSUGE S , TAKATA S . Database for flows of binary gas mixtures through a plane microchannel [J ] . European Journal of Mechanics-B-Fluids , 2008 , 27 ( 4 ): 444 - 465 .
何俊南 , 王珺瑶 , 邓帅 , 等 . 碳捕集能效分析研究进展: 理论模型、评价工具和发展趋势 [J ] . 化工进展 , 2017 , 36 ( S1 ): 406 - 415 .
HE J N , WANG J Y , DENG S , et al . Research progress on energy-efficiency analysis of carbon capture: Theoretical model, evaluation tool and developing trend [J ] . Chemical Industry and Engineering Progress , 2017 , 36 ( S1 ): 406 - 415 .
LI S J , DENG S , ZHAO L , et al . Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle [J ] . Energy , 2020 , 215 : 119155 .
李永田 , 张欢 , 王军 , 等 . 基于热泵技术的电厂余热利用研究 [J ] . 热科学与技术 , 2022 , 21 ( 3 ): 297 - 303 .
LI Y T , ZHANG H , WANG J , et al . Research on waste heat utilization of power plant based on heat pump technology [J ] . Journal of Thermal Science and Technology , 2022 , 21 ( 3 ): 297 - 303 .
胡政 . 燃煤锅炉烟气余热回收利用研究 [J ] . 能源与环保 , 2023 , 45 ( 1 ): 221 - 227 .
HU Z . Study on recovery and utilization of waste heat from flue gas of coal-fired boiler [J ] . China Energy and Environmental Protection , 2023 , 45 ( 1 ): 221 - 227 .
YANG Y P , XU C , XU G , et al . A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery [J ] . Energy Conversion and Management , 2015 , 89 : 137 - 146 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构