浏览全部资源
扫码关注微信
太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
陈文静(1999—),硕士研究生,研究方向为化工系统工程,E-mail:chenwenjing0589@link.tyut.edu.cn。
徐兴堂(1993—),博士,讲师,研究方向为能源化工,E-mail:xuxingtang@tyut.edu.cn;
李文英(1968—),博士,教授,研究方向为能源化工,E-mail:ying@tyut.edu.cn。
收稿日期:2024-09-06,
修回日期:2024-10-08,
纸质出版日期:2025-02-25
移动端阅览
陈文静,徐兴堂,冯杰等.煤炭低碳转化技术及CO2制化学品工艺研究进展[J].低碳化学与化工,2025,50(02):88-99.
CHEN Wenjing,XU Xingtang,FENG Jie,et al.Research progress on low-carbon coal conversion technology and CO2 to chemicals process[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):88-99.
陈文静,徐兴堂,冯杰等.煤炭低碳转化技术及CO2制化学品工艺研究进展[J].低碳化学与化工,2025,50(02):88-99. DOI: 10.12434/j.issn.2097-2547.20240377.
CHEN Wenjing,XU Xingtang,FENG Jie,et al.Research progress on low-carbon coal conversion technology and CO2 to chemicals process[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):88-99. DOI: 10.12434/j.issn.2097-2547.20240377.
发展煤炭清洁高效转化技术,根本在于提高煤中有效元素C、H和O的利用率。而煤富含C元素,势必在利用过程中产生CO
2
,因此在煤炭加工利用过程中,通过化学反应耦合,将产生的CO
2
再利用制成有机化学品(如醇、醚、酸和酯等),无论是在煤化工技术领域,还是在有机合成化学领域都有重要的学术意义和显著的社会效益。从煤炭加工利用行业的碳排放特点出发,分别介绍了煤炭与可再生能源耦合,碳捕集、利用与封存以及CO
2
化学利用3种煤炭低碳转化技术。通过化学反应将煤炭加工利用过程中产生的CO
2
制成含氧化学品,不仅可以在保证原有工艺不被改变的基础上减少CO
2
的直接排放量,还可以生产人类社会所需的高附加值化学品,变“废”为宝。为此,重点论述了基于Aspen Plus模拟CO
2
制备甲醇、甲酸、二甲醚以及碳酸二甲酯等含氧有机化合物的最新化学工艺研究进展,总结了工艺流程的技术特点以及物质转化、能量利用和经济效益等性能参数,并根据先进的煤炭低碳转化技术提出了煤基CO
2
低碳转化新路径,致力于推动煤炭清洁转化技术耦合CO
2
化学再利用向工业应用发展。
The fundamental goal of developing clean and efficient coal conversion technologies is to improve the utilization efficiency of the effective elements C
H and O in coal. Coal is rich in C element
which will inevitably produce CO
2
during the utilization process. Therefore
in the process of coal utilization
the generated CO
2
is coupled through chemical reactions to be reused int
o organic chemicals (such as alcohols
ethers
acids and esters
etc.)
which has important academic significance and significant social benefits in coal chemical technology and in the field of organic synthesis chemistry. Starting from the carbon emission characteristics of the coal processing and utilization industry
three coal low-carbon conversion technologies
namely coal coupled with renewable energy
carbon capture
utilization and storage and CO
2
chemical utilization were introduced
respectively. By chemical reactions to convert CO
2
generated during the process of coal processing and utilization into oxygen-containing chemicals can not only reduce the direct emission of CO
2
while ensuring that the original process is not changed
but also produce high value-added chemicals needed by the human society
turning “waste” into treasure. For this purpose
the latest chemical process research progress on simulating CO
2
to prepare oxygen-containing organic compounds such as methanol
formic acid
dimethyl ether and dimethyl carbonate by Aspen Plus was emphasized. The technical characteristics of the process and the performance parameters
such as material conversion
energy utilization
economic benefits and so on were summarized. Based on advanced low-carbon coal conversion technologies
a new process of coal-based CO
2
low-carbon conversion was proposed
which is dedicated to promoting the development of clean coal conversion technology coupled with CO
2
chemical reuse to industrial applications.
国际能源署 . 2023年CO 2 排放 [R ] . 华盛顿 : 国际能源署 , 2024 .
International Energy Agency . CO 2 emission in 2023 [R ] . Washington : International Energy Agency , 2024 .
秦博宇 , 周星月 , 丁涛 , 等 . 全球碳市场发展现状综述及中国碳市场建设展望 [J ] . 电力系统自动化 , 2022 , 46 ( 21 ): 186 - 199 .
QIN B Y , ZHOU X Y , DING T , et al . Review on development of global carbon market and prospect of China’s carbon market construction [J ] . Automation of Electric Power Systems , 2022 , 46 ( 21 ): 186 - 199 .
孙宝东 , 张军 , 韩一杰 , 等 . “双碳”目标下统筹能源安全与低碳转型的我国能源系统演化趋势与路径研究 [J ] . 中国煤炭 , 2022 , 48 ( 10 ): 1 - 15 .
SUN B D , ZHANG J , HAN Y J , et al . Research on the evolution trend and path of China’s energy system in coordinating energy security and low-carbon transformation based on the carbon peak and carbon neutrality goals [J ] . China Coal , 2022 , 48 ( 10 ): 1 - 15 .
王国法 , 李世军 , 张金虎 , 等 . 筑牢煤炭产业安全 奠定能源安全基石 [J ] . 中国煤炭 , 2022 , 48 ( 7 ): 1 - 9 .
WANG G F , LI S J , ZHANG J H , et al . Ensuring the safety of coal industry to lay the cornerstone of energy security [J ] . China Coal , 2022 , 48 ( 7 ): 1 - 9 .
COHEN S M , CHALMERS H L , WEBBER M E , et al . Comparing post-combustion CO 2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids [J ] . Environmental Research Letters , 2011 , 6 ( 2 ): 24001 .
VAN-DAL É S , BOUALLOU C . Design and simulation of a methanol production plant from CO 2 hydrogenation [J ] . Journal of Cleaner Production , 2013 , 57 : 38 - 45 .
KISS A A , PRAGT J J , VOS H J , et al . Novel efficient process for methanol synthesis by CO 2 hydrogenation [J ] . Chemical Engineering Journal , 2016 , 284 : 260 - 269 .
DE FALCO M , CAPOCELLI M , GIANNATTASIO A . Membrane reactor for one-step DME synthesis process: Industrial plant simulation and optimization [J ] . Journal of CO 2 Utilization , 2017 , 22 : 33 - 43 .
毛健雄 . 燃煤耦合生物质发电 [J ] . 分布式能源 , 2017 , 2 ( 5 ): 47 - 54 .
MAO J X . Co-firing biomass with coal for power generation [J ] . Distributed Energy , 2017 , 2 ( 5 ): 47 - 54 .
贾子奕 , 刘卓 , 张力小 , 等 . 中国碳捕集、利用与封存技术发展与展望 [J ] . 中国环境管理 , 2022 , 14 ( 6 ): 81 - 87 .
JIA Z Y , LIU Z , ZHANG L X , et al . Development and prospect of carbon capture, utilization and storage technology in China [J ] . Chinese Journal of Environmental Management , 2022 , 14 ( 6 ): 81 - 87 .
步学朋 . 二氧化碳捕集技术及应用分析 [J ] . 洁净煤技术 , 2014 , 20 ( 5 ): 9 - 13+19 .
BU X P . CO 2 capture technologies and application [J ] . Clean Coal Technology , 2014 , 20 ( 5 ): 9 - 13+19 .
唐强 , 李金惠 , 邹建伟 , 等 . 二氧化碳捕集技术研究现状与发展综述 [J ] . 世界科技研究与发展 , 2023 , 45 ( 5 ): 567 - 580 .
TANG Q , LI J H , ZOU J W , et al . Review on research status and development of carbon dioxide capture technology [J ] . World SCI-TECH R & D , 2023 , 45 ( 5 ): 567 - 580 .
蔡勇 , 朱瑞松 , 魏弢 , 等 . 二氧化碳捕集技术研究进展及其在驱油中的应用 [J ] . 低碳化学与化工 , 2024 , 49 ( 1 ): 85 - 93 .
CAI Y , ZHU R S , WEI T , et al . Research progress of carbon dioxide capture technologies and their application in enhanced oil recovery [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 1 ): 85 - 93 .
李蒙 . 以低温甲醇与聚醇醚为溶剂的工业气净化工艺对比 [J ] . 能源化工 , 2016 , 37 ( 5 ): 71 - 76 .
LI M . Comparison of rectisol and selexol processes in gas purification [J ] . Energy Chemical Industry , 2016 , 37 ( 5 ): 71 - 76 .
温翯 , 韩伟 , 车春霞 , 等 . 燃烧后二氧化碳捕集技术与应用进展 [J ] . 精细化工 , 2022 , 39 ( 8 ): 1584 - 1595+1632 .
WEN H , HAN W , CHE C X , et al . Progress of post-combustion carbon dioxide capture technology development and applications [J ] . Fine Chemicals , 2022 , 39 ( 8 ): 1584 - 1595+1632 .
荆洁颖 , 屈婷 , 陶威 , 等 . CO 2 原位捕集强化水气变换制氢研究进展 [J ] . 煤炭学报 , 2023 , 48 ( 2 ): 986 - 995 .
JING J Y , QU T , TAO W , et al . An overview on CO 2 sorption enhanced water gas shift for hydrogen pro duction [J ] . Journal of China Coal Society , 2023 , 48 ( 2 ): 986 - 995 .
BOON J , SPALLINA V , VAN DELFT Y , et al . Comparison of the efficiency of carbon dioxide capture by sorption-enhanced water-gas shift and palladium-based membranes for power and hydrogen production [J ] . International Journal of Greenhouse Gas Control , 2016 , 50 : 121 - 134 .
张贤 , 李阳 , 马乔 , 等 . 我国碳捕集利用与封存技术发展研究 [J ] . 中国工程科学 , 2021 , 23 ( 6 ): 70 - 80 .
ZHANG X , LI Y , MA Q , et al . Development of carbon capture, utilization and storage technology in China [J ] . Strategic Study of CAE , 2021 , 23 ( 6 ): 70 - 80 .
OKI Y , INUMARU J , HARA S , et al . Development of oxy-fuel IGCC system with CO 2 recirculation for CO 2 capture [J ] . Energy Procedia , 2011 , 4 : 1066 - 1073 .
YI Q , FENG J , LI W Y . Optimization and efficiency analysis of polygeneration system with coke-oven gas and coal gasified gas by Aspen Plus [J ] . Fuel , 2012 , 96 : 131 - 140 .
中国石化有机原料科技情报中心站 . 世界首套甲烷二氧化碳制合成气日产万方级装置稳定运行 [J ] . 石油炼制与化工 , 2017 , 48 ( 11 ): 75 .
Sinopec Organic Raw Materials Science and Technology Information Center Station . Stable operation of the world’s first methane carbon dioxide syngas production unit with a daily output of 10000 square meters [J ] . Petroleum Processing and Petrochemicals , 2017 , 48 ( 11 ): 75 .
GEORGE A O . Beyond oil and gas: The methanol economy [J ] . Angewandte Chemie International Edition , 2005 , 44 ( 18 ): 2636 - 2639 .
郭嘉懿 , 何育荣 , 马晶晶 , 等 . 二氧化碳催化加氢制甲醇研究进展 [J ] . 洁净煤技术 , 2023 , 29 ( 4 ): 49 - 64 .
GUO J Y , HE Y R , MA J J , et al . Research progress on catalytic hydrogenation of carbon dioxide to methanol [J ] . Clean Coal Technology , 2023 , 29 ( 4 ): 1 - 19 .
河南省人民政府 . 全球首个十万吨级绿色甲醇项目在安阳投产 每年可“吃掉”二氧化碳16万吨 [EB/OL ] . ( 2023-2-22 )[ 2024-09-05 ] . https://www.henan.gov.cn/2023/02-22/2693184.html https://www.henan.gov.cn/2023/02-22/2693184.html .
The People’s Government of He’nan Province . The world’s first 100000-ton green methanol project was put into operation in Anyang, which can “eat” 160000 tons of carbon dioxide per year [EB/OL ] . ( 2023-2-22 )[ 2024-09-05 ] . https://www.henan.gov.cn/2023/02-22/2693184.html https://www.henan.gov.cn/2023/02-22/2693184.html .
刘畅 , 刘忠文 . CO 2 加氢一步制二甲醚展望 [J ] . 化工进展 , 2022 , 41 ( 3 ): 1115 - 1120 .
LIU C , LIU Z W . Perspective on the one-step CO 2 hydrogenation to dimethyl ether [J ] . Chemical Industry and Engineering Progress , 2022 , 41 ( 3 ): 1115 - 1120 .
FARLOW M W , ADKINS H . The hydrogenation of carbon dioxide and a correction of the reported synthesis of urethans [J ] . Journal of the American Chemical Society , 1935 , 57 ( 11 ): 2222 - 2223 .
陈倩倩 , 顾宇 , 唐志永 , 等 . 以二氧化碳规模化利用技术为核心的碳减排方案 [J ] . 中国科学院院刊 , 2019 , 34 ( 4 ): 478 - 487 .
CHEN Q Q , GU Y , TANG Z Y , et al . Carbon dioxide sizable utilization technology based carbon reduction solutions [J ] . Bulletin of Chinese Academy of Sciences , 2019 , 34 ( 4 ): 478 - 487 .
程金燮 , 凌华招 , 王科 , 等 . CO 2 催化加氢制甲醇进展 [J ] . 工业催化 , 2016 , 24 ( 6 ): 19 - 24 .
CHENG J X , LING H Z , WANG K , et al . Progress in CO 2 catalytic hydrogenation to methanol [J ] . Industrial Catalysis , 2016 , 24 ( 6 ): 19 - 24 .
YOUSAF M , MAHMOOD A , ELKAMEL A , et al . Techno-economic analysis of integrated hydrogen and methanol production process by CO 2 hydrogenation [J ] . International Journal of Greenhouse Gas Control , 2022 , 115 : 103615 .
WANG D L , MENG W L , ZHOU H R , et al . Green hydrogen coupling with CO 2 utilization of coal-to-methanol for high methanol productivity and low CO 2 emission [J ] . Energy , 2021 , 231 : 120970 .
WANG D L , LI J W , MENG W L , et al . A near-zero carbon emission methanol production through CO 2 hydrogenation integrated with renewable hydrogen: Process analysis, modification and evaluation [J ] . Journal of Cleaner Production , 2023 , 412 : 137388 .
YANG Q C , LI X F , YANG Q , et al . Opportunities for CO 2 utilization in coal to green fuel process: Optimal design and performance evaluation [J ] . ACS Sustainable Chemistry & Engineering , 2020 , 8 ( 3 ): 1329 - 1342 .
ZHANG D Q , DUAN R H , LI H W , et al . Optimal design, thermodynamic, cost and CO 2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology [J ] . Energy , 2020 , 203 : 117876 .
MAIHOM T , WANNAKAO S , BOEKFA B , et al . Production of formic acid via hydrogenation of CO 2 over a copper-alkoxide-functionalized MOF: A mechanistic study [J ] . The Journal of Physical Chemistry C , 2013 , 117 ( 34 ): 17650 - 17658 .
PÉREZ-FORTES M , SCHÖNEBERGER J C , BOULAMANTI A , et al . Formic acid synthesis using CO 2 as raw material: Techno-economic and environmental evaluation and market potential [J ] . International Journal of Hydrogen Energy , 2016 , 41 : 16444 - 16462 .
LI Q , MACHIDA H , REN X S , et al . Design and optimization of the flexible poly-generation process for methanol and formic acid from CO 2 hydrogenation under uncertain product prices [J ] . International Journal of Hydrogen Energy , 2024 , 54 : 635 - 651 .
郑欢欢 , 伍联营 , 胡仰栋 . 合成气一步法制备二甲醚的工艺流程模拟与优化 [J ] . 化工进展 , 2013 , 32 ( 6 ): 1236 - 1241 .
ZHENG H H , WU L Y , HU Y D . Process simulation and optimization of one-step synthesis of dimethyl ether from syngas [J ] . Chemical Industry and Engineering Process , 2013 , 32 ( 6 ): 1236 - 1241 .
DE FALCO M , NATRELLA G , CAPOCELLI M , et al . Exergetic analysis of DME synthesis from CO 2 and renewable hydrogen [J ] . Energies , 2022 , 15 ( 10 ): 3516 .
WU T W , CHIEN I L . A novel energy-efficient process of converting CO 2 to dimethyl ether with techno-economic and environmental evaluation [J ] . Chemical Engineering Research and Design , 2022 , 177 : 1 - 12 .
MICHAILOS S , MCCORD S , SICK V , et al . Dimethyl ether synthesis via captured CO 2 hydrogenation within the power to liquids concept: A techno-economic assessment [J ] . Energy Conversion and Management , 2019 , 184 : 262 - 276 .
GAO R X , WANG L , ZHANG L Y , et al . A multi-criteria sustainability assessment and decision-making framework for DME synthesis via CO 2 hydrogenation [J ] . Energy , 2023 , 275 : 127467 .
GAO R X , ZHANG L Y , WANG L , et al . Conceptual design of full carbon upcycling of CO 2 into clean DME fuel: Techno-economic assessment and process optimization [J ] . Fuel , 2023 , 344 : 128120 .
OMAE I . Recent developments in carbon dioxide utilization for the production of organic chemicals [J ] . Coordination Chemistry Reviews , 2012 , 256 ( 13/14 ): 1384 - 1405 .
石子兴 , 姚懿轩 , 丁传敏 , 等 . In掺杂CeO 2 催化CO 2 和甲醇一步合成DMC反应的研究 [J ] . 低碳化学与化工 , 2023 , 48 ( 4 ): 16 - 22 .
SHI Z X , YAO Y X , DING C M , et al . Study on one-step synthesis of DMC from CO 2 and methanol catalyzed by In doping CeO 2 [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 4 ): 16 - 22 .
ETA V , MÄKI-ARVELA P , WÄRNÅ J , et al . Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO 2 -MgO catalyst in the presence of butylene oxide as additive [J ] . Applied Catalysis A: General , 2011 , 404 ( 1/2 ): 39 - 46 .
YU B Y , CHEN M K , CHIEN I L . Assessment on CO 2 utilization through rigorous simulation: Converting CO 2 to dimethyl carbonate [J ] . Industrial & Engineering Chemistry Research , 2018 , 57 ( 2 ): 639 - 652 .
WANG H , LU B , WANG X G , et al . Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids [J ] . Fuel Processing Technology , 2009 , 90 ( 10 ): 1198 - 1201 .
KONGPANNA P , PAVARAJARN V , GANI R , et al . Techno-economic evaluation of different CO 2 -based processes for dimethyl carbonate production [J ] . Chemical Engineering Research and Design , 2015 , 93 : 496 - 510 .
LEE Y G , LEE H U , LEE J M , et al . Design of dimethyl carbonate (DMC) synthesis process using CO 2 , techno-economic analysis, and life cycle assessment [J ] . Korean Journal of Chemical Engineering , 2024 , 41 ( 1 ): 117 - 133 .
LI S H , SUN X J , LIU L L , et al . A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal [J ] . Energy , 2023 , 267 : 126566 .
PIATKOWSKI N , WIECKERT C , WEIMER A W , et al . Solar-driven gasification of carbonaceous feedstock—A review [J ] . Energy & Environmental Science , 2010 , 4 ( 1 ): 73 - 82 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构