浏览全部资源
扫码关注微信
兰州理工大学 石油化工学院 甘肃省低碳能源化工重点实验室,甘肃 兰州 730050
范宗良(1969—),硕士,副教授,研究方向为传热传质强化,E-mail:fanzl@lut.edu.cn。
杨勇(1986—),博士,副教授,研究方向为化工过程模拟与强化,E-mail:yangy@lut.edu.cn。
收稿日期:2024-08-30,
修回日期:2024-10-21,
纸质出版日期:2025-04-25
移动端阅览
范宗良,马腾飞,杨勇等.二氧化碳加氢合成甲醇膜反应器研究进展[J].低碳化学与化工,2025,50(04):98-106.
FAN Zongliang,MA Tengfei,YANG Yong,et al.Research progress on membrane reactors for CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):98-106.
范宗良,马腾飞,杨勇等.二氧化碳加氢合成甲醇膜反应器研究进展[J].低碳化学与化工,2025,50(04):98-106. DOI: 10.12434/j.issn.2097-2547.20240363.
FAN Zongliang,MA Tengfei,YANG Yong,et al.Research progress on membrane reactors for CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):98-106. DOI: 10.12434/j.issn.2097-2547.20240363.
可再生能源替代化石能源对实现“碳达峰、碳中和”目标至关重要。甲醇是重要的化工原料,也是理想的氢能载体和储能介质。二氧化碳(CO
2
)加氢合成甲醇技术为基于化石燃料的传统甲醇生产路线提供了一种可行的替代方案,也为CO
2
的资源化利用提供了途径,有望缓解化石燃料短缺和环境污染问题。反应器是CO
2
加氢合成甲醇技术的核心之一,其中膜反应器具有CO
2
转化率高、产物选择性高等优点,在该领域具有广阔的应用前景。综述了CO
2
加氢合成甲醇膜反应器的研究现状,总结了甲醇合成膜反应器的结构特点,分析了甲醇合成膜反应器工业化应用过程中存在的问题以及进一步的研究方向。本研究可为甲醇合成膜反应器的工业化应用提供参考。
Replacing fossil fuels with renewable energy is crucial for achieving the goals of “carbon peaking and carbon neutrality”.Methanol is an important chemical feedstock
as well as an ideal hydrogen carrier and energy storage medium. The CO
2
hydrogenation to methanol technology offers a viable alternative to traditional fossil fuel-based methanol production routes and provides a pathway for CO
2
utilization
which is expected to mitigate fossil fuel shortages and environmental pollution. The reactor is one of the core components of CO
2
hydrogenation to methanol technology
among which the membrane reactor has advantages of high conversion efficiency and high product selectivity and shows great application potential in this field. The research status of membrane reactors for CO
2
hydrogenation to methanol was summarized
and the structural characteristics of methanol synthesis membrane reactors were discussed
and the challenges in their industrial applications were analyzed
and future research directions were explored. This study aims to provide a reference for the industrial application of methanol synthesis membrane reactors.
ZHU L , ZHU D , DAVIS S J , et al . Global carbon emissions in 2023 [J ] . Nature Reviews Earth Environment , 2024 , 5 : 253 - 254 .
LING J H , YANG H T , TIAN G C , et al . Direct reduction of iron to facilitate net zero emissions in the steel industry: A review of research progress at different scales [J ] . Journal of Cleaner Production , 2024 , 441 : 140993 .
李贵贤 , 曹阿波 , 孟文亮 , 等 . 耦合固体氧化物电解槽的CO 2 制甲醇过程设计与评价研究 [J ] . 化工学报 , 2023 , 74 ( 7 ): 2999 - 3009 .
LI G X , CAO A B , MENG W L , et al . Process design and evaluation of CO 2 to methanol coupled with SOEC [J ] . CIESC Journal , 2023 , 74 ( 7 ): 2999 - 3009 .
LI P L , CHEN L G , XIA S J , et al . Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation [J ] . Science China Technological Sciences , 2022 , 65 ( 3 ): 657 - 678 .
VERMA M , BHADURI G A , PHANI KUMAR V S , et al . Biomimetic catalysis of CO 2 hydration: A materials perspect ive [J ] . Industrial & Engineering Chemistry Research , 2021 , 60 ( 13 ): 4777 - 4793 .
PASCUAL-MUÑOZ G , CALERO-BERROCAL R , LARRIBA M , et al . Experimental PSA reactor for methanol-enhanced production via CO 2 hydrogenation [J ] . Separation and Purification Technology , 2024 , 351 : 128030 .
GOLUNSKI S , BURCH R . CO 2 Hydrogenation to methanol over copper catalysts: Learning from syngas conversion [J ] . Topics in Catalysis , 2021 , 64 ( 17/18/19/20 ): 974 - 983 .
闫鹏 , 程易 . 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟 [J ] . 化工进展 , 2022 , 41 ( 7 ): 3446 - 3454 .
YAN P , CHENG Y . Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J ] . Chemical Industry and Engineering Progress , 2022 , 41 ( 7 ): 3446 - 3454 .
STRUIS R P W J , STUCKI S . Verification of the membrane reactor concept for the methanol synthesis [J ] . Applied Catalysis A: General , 2001 , 216 ( 1/2 ): 117 - 129 .
MOHAMMED M G , HASHIM N A , DAUD W M A W , et al . Overview of the latest progress and prospects in the catalytic hydrogenation of carbon dioxide (CO 2 ) to methanol in membrane reactors [J ] . International Journal of Hydrogen Energy , 2024 , 77 : 936 - 957 .
张昊 , 马晓华 , 许振良 . 催化与分离双功能膜及膜反应器 [J ] . 膜科学与技术 , 2019 , 39 ( 1 ): 116 - 124 .
ZHANG H , MA X H , XU Z L . Catalytic and separative difunctional membrane and membrane reactor [J ] . Membrane Science and Technology , 2019 , 39 ( 1 ): 116 - 124 .
邢卫红 , 范益群 , 徐南平 . 无机陶瓷膜应用过程研究的进展 [J ] . 膜科学与技术 , 2003 , 23 ( 4 ): 86 - 92 .
XING W H , FAN Y Q , XU N P . Recent research advances in ceramic membrane applications [J ] . Membrane Science and Technology , 2003 , 23 ( 4 ): 86 - 92 .
潘宜昌 , 周荣飞 , 邢卫红 . 高效分离同碳数烃的先进微孔膜: 现状与挑战 [J ] . 化工进展 , 2023 , 42 ( 8 ): 3926 - 3942 .
PAN Y C , ZHOU R F , XING W H . Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J ] . Chemical Industry and Engineering Progress , 2023 , 42 ( 8 ): 3926 - 3942 .
DEHGHANI Z , RAHIMPOUR M R , SHARIATI A . Simulation and multi-objective optimization of a radial flow gas-cooled membrane reactor, considering reduction of CO 2 emissions in methanol synthesis [J ] . Journal of Environmental Chemical Engineering , 2021 , 9 ( 2 ): 104910 .
RAHIMPOUR M R , GHADER S . Theoretical investigation of a Pd-membrane reactor for methanol synthesis [J ] . Chemical Engineering & Technology , 2003 , 26 ( 8 ): 902 - 907 .
SALEHI M S , ASKARISHAHI M , GALLUCCI F , et al . Selective CO 2 -hydrogenation using a membrane reactor [J ] . Chemical Engineering and Processing—Process Intensification , 2021 , 160 : 108264 .
GALLUCCI F , BASILE A . A theoretical analysis of methanol synthesis from CO 2 and H 2 in a ceramic membrane reactor [J ] . International Journal of Hydrogen Energy , 2007 , 32 ( 18 ): 5050 - 5058 .
SAMIMI F , HAMEDI N , RAHIMPOUR M R . Green methanol production process from indirect CO 2 conversion: RWGS reactor versus RWGS membrane reactor [J ] . Journal of Environmental Chemical Engineering , 2019 , 7 ( 1 ): 102813 .
SESHIMO M , LIU B , LEE H R , et al . Membrane reactor for methanol synthesis using Si-rich LTA zeolite membrane [J ] . Membranes , 2021 , 11 ( 7 ): 505 .
LI H Z , QIU C L , REN S J , et al . Na + -gated water-conducting nanochannels for boosting CO 2 conversion to liquid fuels [J ] . Science , 2020 , 367 : 667 - 671 .
POTO S , AGUIRRE A , HUIGH F , et al . Carbon molecular sieve membranes for water separation in CO 2 hydrogenation reactions: Effect of the carbonization temperature [J ] . Journal of Membrane Science , 2023 , 677 : 121613 .
TIAN C Y , HUANG A S . Synthesis of a Cu/Zn-BTC@LTA derivatived Cu-ZnO@LTA membrane reactor for CO 2 hydrogenation [J ] . Journal of Membrane Science , 2022 , 662 : 121010 .
YUE W Z , LI Y H , WEI W , et al . Highly selective CO 2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor [J ] . Angewandte Chemie International Edition , 2021 , 60 ( 33 ): 18289 - 18294 .
IWAKIRI I G . I, MIGUEL C V, MADEIRA L M. Modeling and simulation of a steam-selective membrane reactor for power-to-methanol [J ] . Computers & Chemical Engineering , 2022 , 156 : 107555 .
FARSI M , JAHANMIRI A . Dynamic modeling and operability analysis of a dual-membrane fixed bed reactor to produce methanol considering catalyst deactivation [J ] . Journal of Industrial and Engineering Chemistry , 2014 , 20 ( 5 ): 2927 - 2933 .
OUNTAKSINKUL K , VAS-UMNUAY P , et al . Performance comparison of different membrane reactors for combined methanol synthesis and biogas upgrading [J ] . Chemical Engineering and Processing—Process Intensification , 2019 , 136 : 191 - 200 .
GALLUCCI F , FERNANDEZ E , CORENGIA P , et al . Recent advances on membranes and membrane reactors for hydrogen production [J ] . Chemical Engineering Science , 2013 , 92 : 40 - 66 .
RAHIMPOUR M R , MAZINANI S , VAFERI B , et al . Comparison of two different flow types on CO removal along a two-stage hydrogen permselective membrane reactor for methanol synthesis [J ] . Applied Energy , 2011 , 88 ( 1 ): 41 - 51 .
RAHIMPOUR M R , LOTFINEJAD M . Co-current and countercurrent configurations for a membrane dual type methanol reactor [J ] . Chemical Engineering & Technology , 2007 , 31 ( 1 ): 38 - 57 .
DIETERICH V , WEIN N , SPLIETHOFF H , et al . Performance requirements of membrane reactors for the application in renewable methanol synthesis: A techno-economic assessment [J ] . Advanced Sustainable Systems , 2022 , 6 ( 12 ): 2200254 .
GALLUCCI F , VAN SINTANNALAND M , KUIPERS J A M . Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming [J ] . International Journal of Hydrogen Energy , 2010 , 35 ( 13 ): 7142 - 7150 .
RAHIMPOUR M R , RAHMANI F , BAYAT M . Contribution to emission reduction of CO 2 by a fluidized-bed membrane dual-type reactor in methanol synthesis process [J ] . Chemical Engineering and Processing—Process Intensification , 2010 , 49 ( 6 ): 589 - 598 .
RAHIMPOUR M R , BAYAT M , RAHMANI F . Dynamic simulation of a cascade fluidized-bed membrane reactor in the presence of long-term catalyst deactivation for methanol synthesis [J ] . Chemical Engineering Science , 2010 , 65 ( 14 ): 4239 - 4249 .
GORBE J , LASOBRAS J , FRANCÉS E , et al . Preliminary study on the feasibility of using a zeolite A membrane in a membrane reactor for methanol production [J ] . Separation and Purification Technology , 2018 , 200 : 164 - 168 .
RASO R , TOVAR M , LASOBRAS J , et al . Zeolite membranes: Comparison in the separation of H 2 O/H 2 /CO 2 mixtures and test of a reactor for CO 2 hydrogenation to methanol [J ] . Catalysis Today , 2021 , 364 : 270 - 275 .
邢卫红 , 汪勇 , 陈日志 , 等 . 膜与膜反应器: 现状、挑战与机遇 [J ] . 中国科学: 化学 , 2014 , 44 ( 9 ): 1469 - 1480 .
XING W H , WANG Y , CHEN R Z , et al . Membranes and membrane reactors:state of the art,challenges,and opportunities [J ] . Scientia Sinica (Chimica) , 2014 , 44 ( 9 ): 1469 - 1480 .
SONG G Q , ZHOU W J , LI C , et al . Semi-hollow LTA zeolite membrane for water permeation in simulated CO 2 hydrogenation to methan ol [J ] . Journal of Membrane Science , 2023 , 678 : 121666 .
李海鹏 , 吴桐 , 王琪 , 等 . 透水NaA分子筛膜强化的CO 2 加氢高效制甲醇 [J ] . 化工进展 , 2024 , 43 ( 5 ): 2834 - 2842 .
LI H P , WU T , WANG Q , et al . Effective methanol production by CO 2 hydrogenation using water-permeable NaA zeolite membrane [J ] . Chemical Industry and Engineering Progress , 2024 , 43 ( 5 ): 2834 - 2842 .
PHAM Q H , GOUDELI E , SCHOLES C A . Carbon dioxide hydrogenation to methanol by flame-deposited CuO/ZrO 2 -polymer membrane reactors [J ] . Chemical Engineering Journal , 2024 , 489 : 151442 .
PRAŠNIKAR A , LINEC M , et al . Understanding membrane-intensified catalytic CO 2 reduction reactions to methanol by structure-based multisite micro-kinetic model [J ] . Journal of Cleaner Production , 2024 , 463 : 142480 .
HAMEDI H , BRINKMANN T . Rigorous and customizable 1D simulation framework for membrane reactors to, in principle, enhance synthetic methanol production [J ] . ACS Sustainable Chemistry & Engineering , 2021 , 9 ( 22 ): 7620 - 7629 .
BAZMI M , GONG J , JESSEN K , et al . Waste CO 2 capture and utilization for methanol production via a novel membrane contactor reactor process: Techno-economic analysis (TEA), and comparison with other existing and emerging technologies [J ] . Chemical Engineering and Processing—Process Intensification , 2024 , 201 : 109825 .
LI Z T , TSOTSIS T T . Methanol synthesis in a high-pressure membrane reactor with liquid sweep [J ] . Journal of Membrane Science , 2019 , 570-571 : 103 - 111 .
ZEBARJAD F S , HU S , LI Z T , et al . Experimental investigation of the application of ionic liquids to methanol synthesis in membrane reactors [J ] . Industrial & Engineering Chemistry Research , 2019 , 58 ( 27 ): 11811 - 11820 .
ZEBARJAD F S , GONG J W , LI Z T , et al . Simulation of methanol synthesis in a membrane-contactor reactor [J ] . Journal of Membrane Science , 2022 , 661 : 120677 .
GONG J W , ZEBARJAD F S , JESSEN K , et al . An experimental and modeling study of the application of membrane contactor reactors to methanol synthesis using pure CO 2 feeds [J ] . Chemical Engineering and Processing—Process Intensification , 2023 , 183 : 109241 .
SAMIMI F , KABIRI S , RAHIMPOUR M R . The optimal operating conditions of a thermally double coupled, dual membrane reactor for simultaneous methanol synthesis, methanol dehydration and methyl cyclohexane dehydrogenation [J ] . Journal of Natural Gas Science and Engineering , 2014 , 19 : 175 - 189 .
RAHMANI F , HAGHIGHI M , ESTIFAEE P , et al . Simulation study of an auto-thermal double-membrane reactor for the simultaneous production of hydrogen and methanol: Comparison of two different hydrogen redistribution strategies along the reactor [J ] . Polish Journal of Chemical Technology , 2017 , 19 ( 2 ): 115 - 124 .
RAHIMPOUR M R , BAYAT M . Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor [J ] . International Journal of Hydrogen Energy , 2011 , 36 ( 11 ): 6616 - 6627 .
上接第 97 页)
YOSHIDA Y , ISHII Y , KATO N , et al . Low-temperature phase transformation accompanied with charge-transfer reaction of polyiodide ions encapsulated in single-walled carbon nanotubes [J ] . Journal of Physical Chemistry C , 2016 , 120 ( 36 ): 20454 - 20461 .
BENESI H A , HILDEBRAND J H . A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons [J ] . Journal of the American Chemical Society , 1949 , 71 ( 8 ): 2703 - 2707 .
CHENG P Y , ZHONG D , ZEWAIL A H . Microscopic solvation and femtochemistry of charge-transfer reactions: The problem of benzene(s)-iodine binary complexes and their solvent structures [J ] . Chemical Physics Letters , 1995 , 242 ( 4/5 ): 369 - 379 .
骆万兴 , 刘希光 , 曲荣君 , 等 . 碘吸附材料的吸附类型综述 [J ] . 鲁东大学学报(自然科学版) , 2009 , 25 ( 2 ): 165 - 170 .
LUO W X , LIU X G , QU R J , et al . Summary of the types of iodine absorption materials [J ] . Ludong University Journal (Natural Science Edition) , 2009 , 25 ( 2 ): 165 - 170 .
GOSWAMI A , GARAI M , BIRADHA K . Interplay of halogen bonding and hydrogen bonding in the cocrystals and salts of dihalogens and trihalides with N,N’-bis(3-pyridylacrylamido) derivatives: Phosphorescent organic salts [J ] . Crystal Growth & Design , 2019 , 19 ( 4 ): 2175 - 2188 .
ORDINARTSEV A A , PETROV A A , LYSSENKO K A , et al . Crystal structure of new formamidinium triiodide jointly refined by single-crystal XRD, Raman scattering spectroscopy and DFT assessment of hydrogen-bond network features [J ] . Acta Crystallographica Section E: Crystallographic Communications , 2021 , 77 : 692 - 695 .
SCHLAMADINGER D E , DASCHBACH M M , GOKEL G W , et al . UV resonance Raman study of cation-π interactions in an indole crown ether [J ] . Journal of Raman Spectroscopy , 2011 , 42 ( 4 ): 633 - 638 .
WU Y H , WANG Q , CHEN Y T , et al . Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically [J ] . Energy & Environmental Science , 2022 , 15 ( 11 ): 4700 - 4709 .
LAN Y S , TONG M M , YANG Q Y , et al . Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide [J ] . CrystEngComm , 2017 , 19 ( 33 ): 4920 - 4926 .
LAMBERTS K , HANDELS P , ENGLERT U , et al . Stabilization of polyiodide chains via anion···anion interactions: Experiment and theory [J ] . CrystEngComm , 2016 , 18 ( 21 ): 3832 - 3841 .
CAVALLO G , METRANGOLO P , MILANI R , et al . The halogen bond [J ] . Chemical Reviews , 2016 , 116 ( 4 ): 2478 - 2601 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构