浏览全部资源
扫码关注微信
1.太原理工大学 环境与生态学院,山西 太原 030024
2.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
3.怀俄明大学 工程与物理科学学院和能源学院,怀俄明 拉勒米 82071
4.山西允博环保新技术有限公司,山西 太原 030024
5.北京建筑材料科学研究总院有限公司 固废资源化利用与节能建材国家重点实验室,北京 100041
6.太原理工大学 煤炭转化技术工程有限公司,山西 太原 030024
黄兆雄(1996—),硕士研究生,研究方向为CO2催化转化,E-mail:291606715@qq.com。
温月丽(1979—),博士,副教授,研究方向为CO2催化转化,E-mail:wenyueli@tyut.edu.cn;
黄伟(1962—),博士,教授,研究方向为碳一化学与多相催化,E-mail:huangwei@tyut.edu.cn。
收稿日期:2024-08-29,
修回日期:2024-10-16,
纸质出版日期:2025-05-25
移动端阅览
黄兆雄,任璐,郑利斌等.碱助剂对MIL-68(Al)负载CuZnAl催化剂CO2加氢制甲醇催化性能的影响[J].低碳化学与化工,2025,50(05):101-109.
HUANG Zhaoxiong,REN Lu,ZHENG Libin,et al.Effects of base promoters on catalytic performances of MIL-68(Al)-loaded CuZnAl catalysts for CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):101-109.
黄兆雄,任璐,郑利斌等.碱助剂对MIL-68(Al)负载CuZnAl催化剂CO2加氢制甲醇催化性能的影响[J].低碳化学与化工,2025,50(05):101-109. DOI: 10.12434/j.issn.2097-2547.20240360.
HUANG Zhaoxiong,REN Lu,ZHENG Libin,et al.Effects of base promoters on catalytic performances of MIL-68(Al)-loaded CuZnAl catalysts for CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):101-109. DOI: 10.12434/j.issn.2097-2547.20240360.
以廉价的CuZnAl催化剂催化CO
2
加氢合成甲醇是节能减排、缓解能源短缺的潜在途径之一,但目前仍存在催化剂的甲醇选择性和稳定性较低等问题。以具有较高比表面积和稳定性的金属有机框架材料MIL-68(Al)作为载体,采用浸渍法制备了CuZnAl催化剂(CZ-MIL),然后分别用碱助剂NaOH、2
6-吡啶二羧酸(PDA)和四硼酸钠(Na
2
B
4
O
7
)调控CZ-MIL的酸碱性,研究了碱助剂对催化剂CO
2
加氢制甲醇催化性能和结构的影响。结果表明,引入弱碱性助剂Na
2
B
4
O
7
对催化剂酸碱性有相对较好的调节效果,在原料气中
V
(H
2
):
V
(CO
2
)为3:1、原料气总流量为100 mL/min、温度为250 ℃,以及压力为3 MPa下反应168 h,该催化剂的甲醇选择性、CO
2
转化率和甲醇时空产率分别为54.94%、2.94%和29.54 mg/(mL·h)。
CO
2
hydrogenation to methanol catalyzed by cheap CuZnAl catalyst is one of the potential ways to save energy
reduce emission and alleviate energy shortage. However
the methanol selectivity and stability of the catalyst are still low. The CuZnAl catalyst (CZ-MIL) was prepared by impregnation method using MIL-68(Al)
a metal-organic framework material with high specific surface area and stability
as the carrier. And then the acid-base property of CZ-MIL was regulated by alkali promoters NaOH
2
6-pyridine dicarboxylic acid (PDA) and sodium tetrborate (Na
2
B
4
O
7
)
respectively. The effect of alkali promoters on catalytic performances and structures of the catalysts for CO
2
hydrogenation to methanol was studied.
The results show that the introduction of weak alkaline agent Na
2
B
4
O
7
has a relatively good adjustment effect on acid-base property of the catalyst. Under the reaction conditions of
V
(H
2
):
V
(CO
2
) of 3:1 in raw gas
total flow rate of raw gas of 100 mL/min
temperature of 250 ℃ and pressure of 3 MPa for 168 h
the methanol selectivity
CO
2
conversion rate and methanol space-time yield of the catalyst are 54.94%
2.94% and 29.54 mg/(mL·h)
respectively.
MIKKELSEN M , JORGENSEN M , KREBS F C . The teraton challenge. A review of fixation and transformation of carbon dioxide [J ] . Energy & Environmental Science , 2010 , 3 ( 1 ): 43 - 81 .
ARESTA M , DIBENEDETTO A , ANGELINI A . Catalysis for the valorization of exhaust carbon: From CO 2 to chemicals, materials, and fuels technological use of CO 2 [J ] . Chemical Reviews , 2014 , 114 ( 3 ): 1709 - 1742 .
LV C C , BAI X H , NING S B , et al . Nanostructured materials for photothermal carbon dioxide hydrogenation: Regulating solar utilization and catalytic performance [J ] . ACS Nano , 2023 , 17 ( 3 ): 1725 - 1738 .
BISWAL T , SHADANGI K P , SARANGI P K , et al . Conversion of carbon dioxide to methanol: A comprehensive review [J ] . Chemosphere , 2022 , 298 : 134299 .
WANG Q , PFEIFFER H , AMAL R , et al . Introduction to CO 2 capture, utilization and storage (CCUS) [J ] . Reaction Chemistry & Engineering , 2022 , 7 ( 3 ): 487 - 489 .
LIU H C , LU H , HU H . CO 2 capture and mineral storage: State of the art and future challenges [J ] . Renewable and Sustainable Energy Reviews , 2024 , 189 : 113908 .
JOHNSSON F . Perspectives on CO 2 capture and storage [J ] . Greenhouse Gases: Science and Technology , 2011 , 1 ( 2 ): 119 - 133 .
NOCITO F , DIBENEDETTO A . Atmospheric CO 2 mitigation technologies: Carbon capture utilization and storage [J ] . Current Opinion in Green and Sustainable Chemistry , 2020 , 21 : 34 - 43 .
ZHANG W T , SUN J S , WANG H L , et al . Recent advances in hydrogenation of CO 2 to CO with heterogeneous catalysts through the RWGS reaction [J ] . Chemistry—An Asian Journal , 2024 , 19 ( 4 ): e202300971 .
LIU G X , POTHS P , ZHANG X X , et al . CO 2 hydrogenation to formate and formic acid by bimetallic palladium-copper hydride clusters [J ] . Journal of the American Chemical Society , 2020 , 142 ( 17 ): 7930 - 7936 .
SONG C S . Global challenges and strategies for control, conversion and utilization of CO 2 for sustainable development involving energy, catalysis, adsorption and chemical processing [J ] . Catalysis Today , 2006 , 115 ( 1/2/3/4 ): 2 - 32 .
LEN T , LUQUE R . Addressing the CO 2 challenge through thermocatalytic hydrogenation to carbon monoxide, methanol and methane [J ] . Green Chemistry , 2023 , 25 ( 2 ): 490 - 521 .
LIU W C , BAEK J , SOMORJAI G A . The methanol economy: Methane and carbon dioxide conversion [J ] . Topics in Catalysis , 2018 , 61 ( 7/8 ): 530 - 541 .
张丽君 , 杨海艳 , 高鹏 . CO 2 加氢制甲醇铜基催化剂研究进展 [J ] . 燃料化学学报(中英文) , 2024 , 52 ( 12 ): 1759 - 1773 .
ZHANG L J , YANG H Y , GAO P . Research progress in copper-based catalysts for methanol synthesis from CO 2 hydrogenation [J ] . Journal of Fuel Chemistry and Technology , 2024 , 52 ( 12 ): 1759 - 1773 .
WANG J Y , ZHANG G H , ZHU J , et al . CO 2 Hydrogenation to methanol over In 2 O 3 -based catalysts: From mechanism to catalyst development [J ] . ACS Catalysis , 2021 , 11 ( 3 ): 1406 - 1423 .
ZHANG Q , WANG S , SHI X R , et al . Conversion of CO 2 to higher alcohols on K-CuZnAl/Zr-CuFe composite [J ] . Applied Catalysis B: Environment and Energy , 2024 , 346 : 123748 .
SHAO S X , CUI C Q , TANG Z Y , et al . Recent advances in metal-organic framewo rks for catalytic CO 2 hydrogenation to diverse products [J ] . Nano Research , 2022 , 15 ( 12 ): 10110 - 10133 .
CUI W G , ZHANG Q , ZHOU L , et al . Hybrid MOF template-directed construction of hollow-structured In 2 O 3 @ZrO 2 heterostructure for enhancing hydrogenation of CO 2 to methanol [J ] . Small , 2023 , 19 ( 1 ): 2204914 .
CAI Z J , DAI J J , LI W , et al . Pd supported on MIL-68(In)-derived In 2 O 3 nanotubes as superior catalysts to boost CO 2 hydrogenation to methanol [J ] . ACS Catalysis , 2020 , 10 ( 22 ): 13275 - 13289 .
ZHAO F G , FAN L L , XU K J , et al . Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO 2 hydrogenation to methanol [J ] . Journal of CO 2 Utilization , 2019 , 33 : 222 - 232 .
杜月仙 . Bi基MOFs衍生材料电催化还原CO 2 的研究 [D ] . 金华 : 浙江师范大学 , 2023 .
DU Y X . Study on the electrocatalytic CO 2 reduction over bi-MOFs derived materials [D ] . Jinhua : Zhejiang Normal University , 2023 .
ZHU Y Z , WU D P , CHEN J H , et al . Enhanced water-resistant performance of Cu-BTC through polyvinylpyrrolidone protection and its capture ability evaluation of methylene blue [J ] . New Journal of Chemistry , 2022 , 46 ( 7 ): 3358 - 3369
CHEN B L , BAI F H , ZHU Y Q , et al . A cost-effective method for the synthesis of zeolitic imidazolate framework-8 materials from stoichiometric precursors via aqueous ammonia modulation at room temperature [J ] . Microporous and Mesoporous Materials , 2014 , 193 : 7 - 14 .
LI C D , WEN Y L , WANG B , et al . Enhancement of catalytic activity of PAl-NaX catalyst for side-chain alkylation of toluene with methanol: Effects of dehydrogenation component Cu [J ] . Fuel , 2023 , 354 : 129271 .
YANG C , WANG B , WEN Y L , et al . Composition control of CuFeZn catalyst derived by PD A and its effect on synthesis of C 2+ alcohols from CO 2 [J ] . Fuel , 2022 , 327 : 125055 .
WANG S Y , WANG L L , ZHU X J , et al . A covalency-aided electrochemical mechanism for CO 2 reduction: The synergistic effect of copper and boron dual active sites drives the formation of a high-efficiency ethanol product [J ] . Nanoscale , 2023 , 15 ( 44 ): 17776 - 17784 .
WANG Z Y , BABUCCI M , ZHANG Y F , et al . Dialing in catalytic sites on metal organic framework nodes: MIL-53(Al) and MIL-68(Al) probed with methanol dehydration catalysis [J ] . ACS Applied Materials & Interfaces , 2020 , 12 ( 47 ): 53537 - 53546 ..
XU L , JIANG Q , XIAO Z , et al . Plasma-engraved Co 3 O 4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction [J ] . Angewandte Chemie International Edition , 2016 , 55 ( 17 ): 5277 - 5281 .
ZHAN W , MA L , GAN M . In-situ growth of CoP wrapped by carbon nanoarray-like architecture onto nitrogen-doped Ti 3 C 2 Pt-based catalyst for efficient methanol oxidation [J ] . Materials Today Chemistry , 2022 , 26 : 101041 .
SALIMI S , F. FARNIA S M , AKHBARI K , et al . Engineered catalyst based on MIL-68(Al) with high stability for hydrogenation of carbon dioxide and carbon monoxide at low temperature [J ] . Inorganic Chemistry , 2023 , 62 ( 43 ): 17588 - 17601 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构