浏览全部资源
扫码关注微信
1.延安大学 化学与化工学院,陕西 延安 716000
2.延安大学 先进能源材料与绿色催化技术陕西省高校工程研究中心,陕西 延安 716000
王雨(1998—),硕士研究生,研究方向为多相催化,E-mail:1047581464@qq.com。
李恒杰(1992—),博士,讲师,研究方向为能源化工及多相催化,E-mail:hj.li@yau.edu.cn;
李雪礼(1980—),博士,副教授,研究方向为能源化工,E-mail:lzlixueli@163.com。
收稿日期:2024-08-10,
修回日期:2024-09-18,
纸质出版日期:2025-04-25
移动端阅览
王雨,李恒杰,张琰图等.甲酸液相脱氢用Pd基多相催化体系的研究进展[J].低碳化学与化工,2025,50(04):140-148.
WANG Yu,LI Hengjie,ZHANG Yantu,et al.Research progress of Pd-based heterogeneous catalytic system for liquid phase dehydrogenation of formic acid[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):140-148.
王雨,李恒杰,张琰图等.甲酸液相脱氢用Pd基多相催化体系的研究进展[J].低碳化学与化工,2025,50(04):140-148. DOI: 10.12434/j.issn.2097-2547.20240332.
WANG Yu,LI Hengjie,ZHANG Yantu,et al.Research progress of Pd-based heterogeneous catalytic system for liquid phase dehydrogenation of formic acid[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):140-148. DOI: 10.12434/j.issn.2097-2547.20240332.
甲酸无色低毒、便于储运,可由CO
2
加氢或生物质转化制得,是理想氢载体之一。Pd作为活性金属在甲酸脱氢反应中具有较高催化活性,但Pd基多相催化剂依然面临着催化活性和选择性不高、稳定性差以及价格昂贵等问题,无法满足工业化需求。针对这些问题,综述了近年来Pd基催化体系用于甲酸液相脱氢反应的研究进展,讨论了甲酸液相脱氢的反应机理以及甲酸液相脱氢反应的关键因素(Pd纳米颗粒(Pd NPs)尺寸/微结构、载体结构/表面性质以及反应添加剂)对催化剂的催化活性和稳定性的影响。分析发现,通过合金化、核壳结构、多孔材料孔道限域、载体表面氨基化/氮掺杂改性及金属氧化物缺陷效应等都可以获得较小颗粒尺寸的Pd NPs,进而提高Pd NPs的分散性和稳定性以及减少Pd用量,同时调节优化Pd NPs的微结构,从而提高甲酸脱氢催化剂的催化活性和稳定性,以期为开发新型甲酸高效脱氢Pd基多相催化
体系提供借鉴。
Formic acid is colorless
low toxicity
easy to store and transport
and can be produced by CO
2
hydrogenation and biomass conversion
which is an ideal hydrogen carrier. As an active metal
Pd has high catalytic activity in formic acid dehydrogenation
but the Pd-based heterogeneous catalysts are still facing the problems of low catalytic activity and selectivity
poor stability and expensive
which cannot meet the needs of industrialization. In order to solve these problems
the research progress of Pd-based heterogeneous catalysts for the liquid-phase dehydrogenation of formic acid in recent years was reviewed
and the reaction mechanism of liquid phase dehydrogenation of formic acid was discussed
as well as the effects of key factors of liquid phase dehydrogenation of formic acid (Pd nanoparticles (Pd NPs) size/microstructure
carrier structure/surface properties and reaction additives) on the catalytic activity and stability were discussed. It is found that the alloying
core-shell structure
pore confinement effect of porous materials
amino functionalization/nitrogen doping modification of carrier surface and metal oxide defect effect
etc. could obtain Pd NPs with smaller sizes
then improve the dispersion and stability of Pd NPs and reduce the amount of Pd
and at the same time adjust and optimize the microstructure of Pd NPs
resulting in the improvement of the activity and stability of the catalysts for the dehydrogenation of formic acid
which can provide useful reference for the development of novel Pd-based heterogeneous catalytic systems for the efficient dehydrogenation of formic acid.
NAVLANI-GARCIA M , MORI K , SALINAS-TORRES D , et al . New approaches toward the hydrogen production from formic acid dehydrogenation over Pd-based heterogeneous catalysts [J ] . Frontiers in Materials , 2019 , 6 : 44 .
ABDALLA A M , HOSSAIN S , NISFINDY O B , et al . Hydrogen production, storage, transportation and key challenges with applications: A review [J ] . Energy Conversion and Management , 2018 , 165 : 602 - 627 .
ZHANG L K , WU W , JIANG Z , et al . A review on liquid-phase heterogeneous dehydrogenation of formic acid: Recent advances and perspectives [J ] . Chemical Papers , 2018 , 72 ( 9 ): 2121 - 2135 .
WEI D , SHI X Z , QU R Y , et al . Toward a hydrogen economy: Development of heterogeneous catalysts for chemical hydrogen storage and release reactions [J ] . ACS Energy Letters , 2022 , 7 ( 10 ): 3734 - 3752 .
刘思凡 , 徐娟 , 黄易旋 , 等 . 甲酸液相分解制氢用负载型金属催化剂的研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 1 ): 170 - 177 .
LIU S F , XU J , HUANG Y X , et al . Research progress of supported metal catalysts for hydrogen generation by liquid-phase decomposition of formic acid [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 1 ): 170 - 177 .
LIU J , LAN L X , LI R , et al . Agglomerated Ag-Pd catalyst with performance for hydrogen generation from formic acid at room temperature [J ] . International Journal of Hydrogen Energy , 2016 , 41 ( 2 ): 951 - 958 .
YADAV M , XU Q . Liquid-phase chemical hydrogen storage materials [J ] . Energy & Environmental Science , 2012 , 5 ( 12 ): 9698 .
BULUSHEV D A , ZACHARSKA M , BELOSHAPKIN S , et al . Catalytic properties of PdZn/ZnO in formic acid decomposition for hydrogen production [J ] . Applied Catalysis A: General , 2018 , 561 : 96 - 103 .
DI L B , ZHANG J S , CRAVEN M , et al . Dehydrogenation of formic acid over Pd/C catalysts: Insight into the cold plasma treatment [J ] . Catalysis Science & Technology , 2020 , 10 ( 18 ): 6129 - 6138 .
ZHANG S Q , QIAN Y J , AHN W S . Catalytic dehydrogenation of formic acid over palladium nanoparticles immobilized on fibrous mesoporous silica KCC-1 [J ] . Chinese Journal of Catalysis , 2019 , 40 ( 11 ): 1704 - 1712 .
刘军 , 周全 , 谢佳琦 , 等 . Pd基催化剂在分解甲酸析氢中的研究进展 [J ] . 化学通报 , 2020 , 83 ( 1 ): 17 - 22 .
LIU J , ZHOU Q , XIE J Q , et al . Application of Pd-based catalysts for hydrogen evolution from formic acid decomposition [J ] . Chemistry , 2020 , 83 ( 1 ): 17 - 22 .
ZHONG H , IGUCHI M , CHATTERJEE M , et al . Formic acid-based liquid organic hydrogen carrier system with heterogeneous catalysts [J ] . Advanced Sustainable Systems , 2018 , 2 ( 2 ): 1700161 .
BAI S X , JIA A , SONG J L , et al . Metal-support interactions in heterogeneous catalytic hydrogen production of formic acid [J ] . Chemical Engineering Journal , 2023 , 474 : 145612 .
QI X Y , OBATA K , YUI Y , et al . Potential-rate correlations of supported palladium-based catalysts for aqueous formic acid dehydrogenation [J ] . Journal of the American Chemical Society , 2024 , 146 ( 13 ): 9191 - 9204 .
BULUSHEV D A , GOLUB F S , TRUBINA S V , et al . Single-atom Pd catalysts supported on covalent triazine frameworks for hydrogen production from formic acid [J ] . ACS Applied Nano Materials , 2022 , 5 ( 9 ): 12887 - 12896 .
DOUSTKHAH E , TSUNOJI N , MINE S , et al . Feeble single-atom Pd catalysts for H 2 production from formic acid [J ] . ACS Applied Materials & Interfaces , 2024 , 16 ( 8 ): 10251 - 10259 .
JIN M H , PARK J H , OH D , et al . Pd/NH 2 -KIE-6 catalysts with exceptional catalytic activity for additive-free formic acid dehydrogenation at room temperature: Controlling Pd nanoparticle size by stirring time and types of Pd precursors [J ] . International Journal of Hydrogen Energy , 2018 , 43 ( 3 ): 1451 - 1458 .
ZHOU C H , LI S , CHAI H , et al . Immobilizing Pd nanoparticles on amine-functionalized yolk-shell mesoporous silica nanospheres for efficient H 2 production from formic acid dehydrogenation [J ] . Applied Catalysis B: Environment and Energy , 2024 , 346 : 123750 .
DU S Y , ZHANG C J , JIANG P P , et al . Palladium nanoparticles immobilized on nitride carbon-coated mesoporous tungsten oxide for formic acid dehydrogenation [J ] . ACS Applied Nano Materials , 2019 , 2 ( 11 ): 7432 - 7440 .
ZHANG Q Y , ZHU Z Q , ZHANG X W , et al . Amine-functionalized sepiolite: Toward highly efficient palladium nanocatalyst for dehydrogenation of additive-free formic acid [J ] . International Journal of Hydrogen Energy , 2019 , 44 ( 31 ): 16707 - 16717 .
JIANG K , XU K , ZOU S Z , et al . B-doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions [J ] . Journal of the American Chemical Society , 2014 , 136 ( 13 ): 4861 - 4864 .
SUN J Y , QIU H , CAO W G , et al . Ultrafine Pd particles embedded in nitrogen-enriched mesoporous carbon for efficient H 2 production from formic acid decomposition [J ] . ACS Sustainable Chemistry & Engineering , 2018 , 7 ( 2 ): 1963 - 1972 .
ZHAO X , DAI P , XU D Y , et al . Ultrafine palladium nanoparticles anchored on NH 2 -functionalized reduced graphene oxide as efficient catalyst towards formic acid dehydrogenation [J ] . International Journal of Hydrogen Energy , 2020 , 45 ( 55 ): 30396 - 30403 .
WANG N , SUN Q M , BAI R S , et al . In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation [J ] . Journal of the American Chemical Society , 2016 , 138 ( 24 ): 7484 - 7487 .
ZOU L Y , LIU Q , ZHU D Y , et al . Experimental and theoretical studies of ultrafine Pd-based biochar catalyst for dehydrogenation of formic acid and application of in situ hydrogenation [J ] . ACS Applied Materials & Interfaces , 2022 , 14 ( 15 ): 17282 - 17295 .
LI J J , CHEN W , ZHAO H , et al . Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid [J ] . Journal of Catalysis , 2017 , 352 : 371 - 381 .
KIM Y , LEE H , YANG S , et al . Ultrafine Pd nanoparticles on amine-functionalized carbon nanotubes for hydrogen production from formic acid [J ] . Journal of Catalysis , 2021 , 404 : 324 - 333 .
DENG M , MA J , LIU Y T , et al . Pd nanoparticles confined in pure silicalite-2 zeolite with enhanced catalytic performance for the dehydrogenation of formic acid at room temperature [J ] . Fuel , 2023 , 333 .
DOUSTKHAH E , HASANI M , IDE Y , et al . Pd nanoalloys for H 2 generation from formic acid [J ] . ACS Applied Nano Materials , 2019 , 3 ( 1 ): 22 - 43 .
DONG A Q , JIANG Q , ZHOU Y T . Au 3 Pd 1 intermetallic compound as single atom catalyst for formic acid decomposition with highly hydrogen selectivity [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 76 ): 29542 - 29551 .
WEN M C , MORI K , KUWAHARA Y , et al . Plasmonic Au@Pd nanoparticles supported on a basic metal-organic framework: Synergic boosting of H 2 production from formic acid [J ] . ACS Energy Letters , 2016 , 2 ( 1 ): 1 - 7 .
XU L X , JIN B , ZHANG J , et al . Efficient hydrogen generation from formic acid using AgPd nanoparticles immobilized on carbon nitride-functionalized SBA-15 [J ] . RSC Advances , 2016 , 6 ( 52 ): 46908 - 46914 .
ZHOU H , YANG G , CHEN M Y , et al . Aluminum fluoride induced PdAu nanop articles on layered g -C 3 N 4 nanosheets for efficient dehydrogenation of formic acid at room temperature [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 71 ): 30440 - 30448 .
TAMARANY R , SHIN D Y , KANG S , et al . Formic acid dehydrogenation over PdNi alloys supported on N-doped carbon: Synergistic effect of Pd-Ni alloying on hydrogen release [J ] . Physical Chemistry Chemical Physics , 2021 , 23 ( 19 ): 11515 - 11527 .
NIE W D , LUO Y X , YANG Q F , et al . An amine-functionalized mesoporous silica-supported PdIr catalyst: Boosting room-temperature hydrogen generation from formic acid [J ] . Inorganic Chemistry Frontiers , 2020 , 7 ( 3 ): 709 - 717 .
DI L B , ZHANG J S , ZHANG X L , et al . Cold plasma enhanced preparation of high performance PdRu/C formic acid dehydrogenation catalysts [J ] . International Journal of Hydrogen Energy , 2021 , 46 ( 76 ): 37836 - 37846 .
ZHAO X , DAI P , XU D y , et al . Ultrafine PdAg alloy nanoparticles anchored on NH 2 -functionalized 2D/2D TiO 2 nanosheet/rGO composite as efficient and reusable catalyst for hydrogen release from additive-free formic acid at room temperature [J ] . Journal of Energy Chemistry , 2021 , 59 : 455 - 464 .
GUO B B , LI Q L , LIN J , et al . Bimetallic AuPd nanoparticles loaded on amine-functionalized porous boron nitride nanofibers for catalytic dehydrogenation of formic acid [J ] . ACS Applied Nano Materials , 2021 , 4 ( 2 ): 1849 - 1857 .
ZHANG Z J , HE D W , WANG Z , et al . Bimetallic palladium chromium nanoparticles anchored on amine-functionalized titanium carbides for remarkably catalytic dehydrogenation of formic acid at mild conditions [J ] . Journal of Catalysis , 2022 , 410 : 121 - 127 .
WANG Z Z , LIANG S P , MENG X Y , et al . Ultrasmall PdAu alloy nanoparticles anchored on amine-functionalized hierarchically porous carbon as additive-free catalysts for highly efficient dehydrogenation of formic acid [J ] . Applied Catalysis B: Environmental , 2021 , 291 : 120140 .
WU L M , Ni B X , CHEN R , et al . Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature [J ] . Nanoscale Advances , 2019 , 1 ( 11 ): 4415 - 4421 .
JIANG Y Q , CHEN M , YANG Y F , et al . Facile synthesis of AuPd nanoparticles anchored on TiO 2 nanosheets for efficient dehydrogenation of formic acid [J ] . Nanotechnology , 2018 , 29 ( 33 ): 5402 .
YANG L , LUO W , CHENG G Z . Monodisperse CoAgPd nanoparticles assembled on graphene for efficient hydrogen generation from formic acid at room temperature [J ] . International Journal of Hydrogen Energy , 2016 , 41 ( 1 ): 439 - 446 .
LIU D X , ZHOU Y T , ZHU Y F , et al . Tri-metallic AuPdIr nanoalloy towards efficient hydrogen generation from formic acid [J ] . Applied Catalysis B: Environmental , 2022 , 309 : 121228 .
WANG Z L , YAN J M , WANG H L , et al . Au@Pd core-shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid [J ] . Journal of Materials Chemistry A , 2013 , 1 ( 41 ): 12721 - 12725 .
CHOI B S , SONG J , SONG M , et al . Core-shell engineering of Pd-Ag bimetallic catalysts for efficient hydrogen production from formic acid decomposition [J ] . ACS Catalysis , 2018 , 9 ( 2 ): 819 - 826 .
CAI Y Y , LI X H , ZHANG Y N , et al . Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based mott-schottky photocatalyst [J ] . Angewandte Chemie International Edition , 2013 , 52 ( 45 ): 11822 - 11825 .
WANG Z Z , HAO X F , HU D W , et al . PdAu bimetallic nanoparticles anchored on amine-modified mesoporous ZrSBA-15 for dehydrogenation of formic acid under ambient conditions [J ] . Catalysis Science & Technology , 2017 , 7 ( 11 ): 2213 - 2220 .
SUN X F , ZHANG G Y , YAO Q L , et al . Amine-functionalized carbon bowl-supported Pd-La(OH) 3 for formic acid dehydrogenation [J ] . Inorganic Chemistry , 2022 , 61 ( 45 ): 18102 - 18111 .
LI S , ZHOU C H , HU J S , et al . PdIr nanoparticles on NH 2 -functionalized dendritic mesoporous silica nanospheres for efficient dehydrogenation of formic acid [J ] . Journal of Catalysis , 2023 , 426 : 153 - 161 .
SONG F Z , ZHU Q L , YANG X C , et al . Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid [J ] . Advanced Energy Materials , 2017 , 8 ( 1 ): 1701416 .
HAN J , ZHANG Z J , HAO Z R , et al . Immobilization of palladium silver nanoparticles on NH 2 -functional metal-organic framework for fast dehydrogenation of formic acid [J ] . Journal of Colloid and Interface Science , 2021 , 587 : 736 - 742 .
MARTIS M , MORI K , FUJIWARA K , et al . Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature [J ] . The Journal of Physical Chemistry C , 2013 , 117 ( 44 ): 22805 - 22810 .
ALAMGHOLILOO H , ZHANG S B , AHADI A , et al . Synthesis of bimetallic 4-PySI-Pd@Cu(BDC) via open metal site Cu-MOF: Effect of metal and support of Pd@Cu-MOFs in H 2 generation from formic acid [J ] . Molecular Catalysis , 2019 , 467 : 30 - 37 .
DENG M , YANG A J , MA J , et al . Enhanced catalytic performance of N-doped carbon sphere-supported Pd nanoparticles by secondary nitrogen source regulation for formic acid dehydrogenation [J ] . ACS Applied Materials & Interfaces , 2022 , 14 ( 16 ): 18550 - 18560 .
LIU C , BING Q M , LIU J Y . Formic acid dehydrogenation over Pd single atom or cluster supported on nitrogen-doped graphene: A DFT study [J ] . Applied Surface Science , 2022 , 604 : 154510 .
DUAN Z Q , LEI Q , WU W H , et al . 2-Dimensional metal-organic framework derived N-doped carbon immobilized Pd nanoparticles for hydrogen release from formic acid [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 21 ): 7708 - 7718 .
BI Q Y , LIN J D , LIU Y M , et al . Dehydrogenation of formic acid at room temperature: Boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon [J ] . Angewandte Chemie International Edition , 2016 , 55 ( 39 ): 11849 - 11853 .
JIANG Y Q , FAN X L , CHEN M , et al . AuPd nanoparticles anchored on nitrogen-decorated carbon nanosheets with highly efficient and selective catalysis for the dehydrogenation of formic acid [J ] . The Journal of Physical Chemistry C , 2018 , 122 ( 9 ): 4792 - 4801 .
YUAN Z C , CAO T T , DENG M , et al . Unveiling the CeO 2 morphology effect in Pd-CeO 2 /C heterostructures catalysts for formic acid dehydrogenation [J ] . Fuel , 2023 , 346 : 128333 .
SONG J L , BAI S X , SUN Q . Strong metal-support interaction of Pd/CeO 2 enhances hydrogen production from formic acid decomposition [J ] . Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2023 , 658 : 130645 .
ZHOU J P , ZHANG J , DAI X H , et al . Formic acid-ammonium formate mixture: A new system with extremely high dehydrogenation activity and capacity [J ] . International Journal of Hydrogen Energy , 2016 , 41 ( 47 ): 22059 - 22066 .
ZOU L Y , ZHANG Q Y , HUANG Y Q , et al . Highly efficient hydrogen generation from a formic acid/triethanolamine system using a Pd-based catalyst and correlation for apparent activation energy estimation [J ] . Industrial & Engineering Chemistry Research , 2019 , 58 ( 51 ): 22984 - 22995 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构