浏览全部资源
扫码关注微信
1.伊犁新天煤化工有限责任公司,新疆 伊犁 835100
2.浙江省白马湖实验室有限公司,浙江 杭州 310051
杨卫红(1986—),本科,工程师,研究方向为煤制合成气产业发展与规划、煤化工废水处理,以及二氧化碳减量化和资源化利用,E-mail:2474496551@qq.com。
周林(1992—),博士,副研究员,研究方向为多孔材料制备与应用,E-mail:zhoulin1@zju.edu.cn。
收稿日期:2024-08-12,
修回日期:2024-09-04,
纸质出版日期:2025-04-25
移动端阅览
杨卫红,赖颖峰,段金娣等.烷烃催化裂解制低碳烯烃催化剂研究进展[J].低碳化学与化工,2025,50(04):46-54.
YANG Weihong,LAI Yingfeng,DUAN Jindi,et al.Research progress of catalysts in catalytic cracking of alkanes to light olefins[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):46-54.
杨卫红,赖颖峰,段金娣等.烷烃催化裂解制低碳烯烃催化剂研究进展[J].低碳化学与化工,2025,50(04):46-54. DOI: 10.12434/j.issn.2097-2547.20240331.
YANG Weihong,LAI Yingfeng,DUAN Jindi,et al.Research progress of catalysts in catalytic cracking of alkanes to light olefins[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):46-54. DOI: 10.12434/j.issn.2097-2547.20240331.
低碳烯烃作为重要的基础化工原料,其需求日益增长。烷烃催化裂解是制备低碳烯烃的主要途径之一。对烷烃催化裂解制备低碳烯烃的反应机理(碳正离子机理和自由基机理)进行了总结,对该反应使用的催化剂(分子筛、金属氧化物和双功能催化剂)的研究进展进行了分析,并对烷烃催化裂解制低碳烯烃催化剂未来发展和优化方向进行了展望。
As essential feedstocks in the chemical industry
the demand for light olefins is steadily increasing. Cracking of alkanes is one of the main routes to obtain light olefins. The reaction mechanisms (carbocation and free radical mechanisms) involved in the catalytic cracking of alkanes to light olefins were summarized. The research progress of catalysts (molecular sieves
metal oxides
and bifunctional catalysts) utilized for the reaction were analyzed. Furthermore
future directions for the development and optimization of catalysts for alkane catalytic cracking to light olefins were prospected.
BORONAT M , CLIMENT M J , CONCEPCI’ON P , et al . A carrier in catalysis: Avelino corma [J ] . ACS Catalysis , 2022 , 12 ( 12 ): 7054 - 7123 .
XIANG D , YANG S Y , QIAN Y . Techno-economic analysis and comparison of coal based olefins processes [J ] . Energy Conversion and Management , 2016 , 110 : 33 - 41 .
ZHANG W N , ZHI Y C , HUANG J D , et al . Methanol to olefins reaction route based on methylcyclopentadienes as critical intermediates [J ] . ACS Catalysis , 2019 , 9 ( 8 ): 7373 - 7379 .
WANG C T , FANG W , LIU Z Q , et al . Fischer-Tropsch synthesis to olefins boosted by MFI zeolite nanosheets [J ] . Nature Nanotechnology , 2022 , 17 ( 7 ): 714 - 720 .
CHEN S Y , WANG J C , LI C , et al . Hydrogenation of CO 2 to light olefins over ZnZrO x /SSZ-13 [J ] . Angewandte Chemie International Edition , 2024 , 63 ( 8 ): e202316874 .
AKAH A , WILLIAMS J , GHRAMI M . An overview of light olefins production via steam enhanced catalytic cracking [J ] . Catalysis Surveys from Asia , 2019 , 23 : 265 - 276 .
GHOLAMI Z , GHOLAMI F , TISLER Z , et al . A review on the production of light olefins using steam cracking of hydrocarbons [J ] . Energies , 2021 , 14 ( 23 ): 8190 .
ALMUQATI N S , ALDAWSARI A M , ALHARBI K N , et al . Catalytic production of light olefins: Perspective and prospective [J ] . Fuel , 2024 , 366 : 131270 .
BLAY V , LOUIS B , MIRAVALLES R , et al . Engineering zeolites for catalytic cracking to light olefins [J ] . ACS Catalysis , 2017 , 7 ( 10 ): 6542 - 6566 .
ALIPOUR S M . Recent advances in naphtha catalytic cracking by nano ZSM-5: A review [J ] . Chinese Journal of Catalysis , 2016 , 37 ( 5 ): 671 - 680 .
ZUO Z X , SHA Y C , WANG R Y , et al . A lost piece of the puzzle of the alkane cracking mechanism: A carbanion pathway on a solid base catalyst [J ] . RSC Advances , 2024 , 14 ( 21 ): 15071 - 15084 .
GUO D R , ZHU M H , YANG Z X , et al . Insights into catalytic cracking of n -heptane over Ga-doped hierarchical ZSM-5 [J ] . Industrial & Engineering Chemistry Research , 2024 , 63 ( 25 ): 10965 - 10980 .
GREENSFELDER B S , VOGE H H , GOOD G M . Catalytic and thermal cracking of pure hydrocarbons [J ] . Industrial & Engingeering Chemistry , 1949 , 41 ( 11 ): 2573 - 2584 .
DANIEL J S , DANIEL J M , ALLAN L L . The carbocation rearrangement mechanism, clarified [J ] . The Journal of Organic Chemistry , 2016 , 81 ( 4 ): 1410 - 1415 .
OLAH G A , KLOPMAN G , SCHLOSBERG R H . Additions and corrections-chemistry in super acids. III. Protonation of alkanes and the intermediacy of alkanonium ions, pentacoordinated carbon cations of the CH <math id="M1"><msubsup><mrow/><mrow><mn mathvariant="normal">5</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math> https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502685&type= 3.64066648 https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=78502686&type= 1.10066664 type [J ] . Journal of the American Chemical Society , 1969 , 91 ( 12 ): 3261 - 3268 .
KOTREL S , KNÖZINGER H , GATES B C . The Haag-Dessau mechanism of protolytic cracking of alkanes [J ] . Microporous and Mesoporous Materials , 2000 , 35/36 : 11 - 20 .
RICE P O , HERZFELD K F . The thermal decomposition of organic compounds from the standpoint of free radicals [J ] . Journal of the American Chemical Society , 1934 , 56 ( 2 ): 284 - 289 .
张利军 , 张永刚 , 王国清 . 石脑油裂解反应模型研究及应用进展 [J ] . 化工进展 , 2010 , 29 ( 8 ): 1411 - 1417 .
ZHANG L J , ZHANG Y G , WANG G Q . Progress and prospect in modeling and simulation of naphtha cracking [J ] . Chemical Industry and Engineering Progress , 2010 , 29 ( 8 ): 1411 - 1417 .
王峰 , 任杰 , 李永旺 . 正已烷裂解反应自由基模型的理论研究 [J ] . 计算机与应用化学 , 2009 , 26 ( 10 ): 1243 - 1248 .
WANG F , REN J , LI Y Z . Theoretical study on the free radical model of n -hexane decomposition reaction [J ] . Computers and Applied Chemistry , 2009 , 26 ( 10 ): 1243 - 1248 .
LIU D , CHOI W C , LEE C W , et al . Steaming and washing effect of P/HZSM-5 in catalytic cracking of naphtha [J ] . Catalysis Today , 2010 , 164 ( 1 ): 154 - 157 .
ALTWASSER S , WELKER C , TRAA Y , et al . Catalytic cracking of n -octane on small-pore zeolites [J ] . Microporous and Mesoporous Materials , 2005 , 83 ( 1/2/3 ): 345 - 356 .
MA P D , ZHOU H X , LI Y B , et al . Selectivity descriptors of the catalytic n -hexane cracking process over 10-membered ring zeolites [J ] . Chemical Science , 2024 , 15 ( 30 ): 11937 - 11945 .
WANG P , XIAO X , PAN Y T , et al . Facile synthesis of nanosheet-stacked hierarchical ZSM-5 zeolite for efficient catalytic cracking of n -octane to produce light olefins [J ] . Catalysts , 2022 , 12 ( 3 ): 351 .
WANG Y , YOKOI T , TATSUMI T . Selective production of light olefins over zeolite catalysts: Impacts of topology, acidity, and particle size [J ] . Microporous and Mesoporous Materials , 2023 , 358 : 112353 .
WANG Y , OTOMO R , TATSUMI T , et al . Dealumination of organic structure directing agent (OSDA) free beta zeolite for enhancing its catalytic performance in n -hexane [J ] . Microporous and Mesoporous Materials , 2016 , 220 : 275 - 281 .
BAI Y E , LIU D Y , ZHAO L , et al . Tuning the concentrations of acid sites on ZSM-5 zeolite for improving light olefin production in catalytic pyrolysis of paraffin [J ] . Industrial & Engineering Chemistry Research , 2022 , 61 ( 43 ): 15842 - 15855 .
WANG Y , YOKOI T , NAMBA S , et al . Catalytic cracking of n -hexane for producing propylene on MCM-22 zeolites [J ] . Applied Catalysis A: General , 2015 , 504 : 192 - 202 .
YOKOI T , MOCHIZUKI H , BILIGETU T , et al . Unique Al distribution in the MFI framework and its impact on catalytic properties [J ] . Chemistry Letters , 2017 , 46 ( 6 ): 798 - 800 .
AL-SHAFEI E N , ALJISHI A N , SHAKOOR Z M , et al . Steam catalytic cracking and lump kinetics of naphtha to light olefins over nanocrystalline ZSM-5 zeolite [J ] . RSC Advances , 2023 , 13 ( 43 ): 25804 - 25816 .
ZHU J L , YAN S Y , QIAN Y , et al . Fabrication of fluffy-ball like ZSM-5 zeolite and its application in hexane catalytic cracking [J ] . Microporous and Mesoporous Materials , 2023 , 351 : 112465 .
SHI J , ZHAO G L , TENG J W , et al . Morphology control of ZSM-5 zeolites and their application in cracking reaction of C 4 olefin [J ] . Inorganic Chemistry Frontiers , 2018 , 5 ( 11 ): 2734 - 2738 .
DAI X J , CHENG Y , LIU T T , et al . Tailored synthesis of plate-like SAPO-11 molecular sieve and its application in non-noble metal-supported catalyst for efficient hydroisomerization of long-chain n -alkanes [J ] . Chemical Engineering Journal , 2024 , 480 : 148358 .
PARK Y K , LEE C W , KANG N Y , et al . Catalytic cracking of lower-valued hydrocarbons for producing light olefins [J ] . Catalysis Surveys from Asia , 2010 , 14 : 75 - 84 .
AMUSA H K , ADAMU S , BAKARE I A , et al . High-performance VO x on SrO- γ -Al 2 O 3 catalyst for oxidative cracking of n -hexane to light olefins under anaerobic environment [J ] . Journal of Industrial and Engineering Chemistry , 2020 , 89 : 339 - 350 .
BOYADJIAN C , VEER B , BABICH I V , et al . Catalytic oxidative cracking as a route to olefins: Oxidative conversion of hexane over MoO 3 -Li/MgO [J ] . Catalysis Today , 2010 , 157 ( 1/2/3/4 ): 345 - 350 .
XU B , ZHU X F , CAO Z W , et al . Catalytic oxidative dehydrogenation of n -butane over V 2 O 5 /Mo-Al 2 O 3 (M = Mg, Ca, Sr, Ba) catalysts [J ] . Chinese Journal of Catalysis , 2015 , 36 ( 7 ): 1060 - 1067 .
AMUSA H K , ADAMU S , ARJAH A S . Kinetics of oxidative cracking of n -hexane to light olefins using lattice oxygen of a VO x /SrO- γ -Al 2 O 3 catalyst [J ] . Chemistry—An Asian Journal , 2021 , 16 ( 13 ): 1792 - 1806 .
BERGER T , SCHUH J , STERRER M , et al . Lithium ion induced surface reactivity changes on MgO nanoparticles [J ] . Journal of Catalysisl , 2007 , 247 ( 1 ): 61 - 67 .
ITO T , WANG J X , LIN C H , et al . Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst [J ] . Journal of American Chemistry Society , 1985 , 107 ( 18 ): 5062 - 5068 .
CAVANI F , TRIFIRO F . The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins [J ] . Catalysis Today , 1995 , 24 ( 3 ): 307 - 313 .
LEVELES L , SESHAN K , LERCHER J A , et al . Oxidative conversion of propane over lithium-promoted magnesia catalyst: I. Kinetics and mechanism [J ] . Journal of Catalysis , 2003 , 218 ( 2 ): 296 - 306 .
BOYADJIAN C A , LEFFERTS L , SESHAN K . Catalytic oxidative cracking of hexane as a route to olefins [J ] . Applied Catalysis A: General , 2010 , 372 ( 2 ): 167 - 174 .
ZAVYALOVA U , GESKE M , HORN R , et al . Morphology and microstructure of Li/MgO catalysts for the oxidative coupling of methane [J ] . ChemCatChem , 2011 , 3 ( 6 ): 949 - 959 .
BOYADJIAN C A , VEER B , BABICH I V , et al . Catalytic oxidative cracking as a route to olefins: Oxidative conversion of hexane over MoO 3 -Li/MgO [J ] . Catalysis Today , 2010 , 157 ( 1/2/3/4 ): 345 - 350 .
JIAO Y , ZHANG H , LI S S , et al . Impact of acidity in ZrO 2 -TiO 2 -Al 2 O 3 composite oxides on the catalytic activity and coking behaviors during n -decane cracking [J ] . Fuel , 2018 , 233 : 724 - 731 .
HOU X , NI N , WANG Y , et al . Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins [J ] . Journal of Analytical and Applied Pyrolysis , 2019 , 138 : 270 - 280 .
HODOSHIMA S , MOTOMIYA A , WAKAMATSU S , et al . Catalytic cracking of light-naphtha over MFI-zeolite/metal-oxide composites for efficient propylene production [J ] . Research on Chemical Intermediates , 2015 , 41 : 9615 - 9626 .
WANG J , SHAN J W , TIAN Y J , et al . Catalytic cracking of n -heptane over Fe modified HZSM-5 nanosheet to produce light olefins [J ] . Fuel , 2021 , 306 : 121725 .
XU Y , WANG X C , YANG D , et al . Stabilizing oxygen vacancies in ZrO 2 by Ga 2 O 3 boosts the direct dehydrogenation of light alkanes [J ] . ACS Catalysis , 2021 , 11 ( 16 ): 10159 - 10169 .
WU J W , GAO J , LIAN S S , et al . Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C—H activation [J ] . Applied Catalysis B: Environmental , 2022 , 314 : 121516 .
JI Y J , YANG H H , YAN W . Effect of alkali metal cations modification on the acid/basic properties and catalytic activity of ZSM-5 in cracking of supercritical n -dodecane [J ] . Fuel , 2019 , 243 : 155 - 161 .
HOU X , QIU Y , YUAN E X , et al . Promotion on light olefins production through modulating the reaction pathways for n -pentane catalytic cracking over ZSM-5 based catalysts [J ] . Applied Catalysis A: General , 2017 , 543 : 51 - 60 .
LV J , HUA Z L , GE T G , et al . Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking [J ] . Microporous and Mesoporous Materials , 2017 , 247 : 31 - 37 .
LIU M J , WANG G , ZHANG Z D , et al . Catalytic pyrolysis performance of alkanes to light olefins over bifunctional ZSM-5 zeolites [J ] . Journal of Analytical and Applied Pyrolysis , 2023 , 170 : 105924 .
上接第 37 页)
孙炫成 . Cu催化剂上合成气合成乙醇的反应机理研究 [D ] . 太原 : 太原理工大学 , 2013 .
SUN X C . Study on the reaction mechanism of ethanol synthesis from syngas on Cu catalyst [D ] . Taiyuan : Taiyuan University of Technology , 2013 .
CHEN X Y , ZHANG W H , HUANG W X . CO hydrogenation on stepped Cu and CuZn alloy surfaces: Competition between methanol synthesis and methanation pathways [J ] . Chinese Chemical Letters , 2023 , 34 ( 7 ): 107809 .
LI J , CROISET E , RICARDEZ-SANDOVAL L . Methane dissociation on Ni(100), Ni(111), and Ni(553): A comparative density functional theory study [J ] . Journal of Molecular Catalysis A: Chemical , 2012 , 365 : 103 - 114 .
BESENBACHER F , CHORKENDORFF I , CLAUSEN B S , et al . Design of a surface alloy catalyst for steam reforming [J ] . Science , 1998 , 279 ( 5358 ): 1913 - 1915 .
FANG W , LIU W J , GUO X J , et al . Theoretical investigation of CO adsorption on clean and hydroxylated TiO 2 -B(100) surfaces [J ] . The Journal of Physical Chemistry C , 2011 , 115 ( 17 ): 8622 - 8629 .
MA L X , WANG B J , FAN M H , et al . A specific defect type of Cu active site to suppress water-gas-shift reaction in syngas conversion to methanol over Cu catalysts [J ] . Chemical Engineering Science , 2023 , 269 : 118496 .
SUNG S S , HOFFMANN R . How carbon monoxide bonds to metal surfaces [J ] . Journal of the American Chemical Society , 1985 , 107 ( 3 ): 578 - 584 .
王雨欣 , 刘冰 , 刘小浩 . H覆盖对费托合成催化剂CO活化影响的理论计算研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 10 - 17 .
WANG Y X , LIU B , LIU X H . Theoretical calculation study on effects of H coverage on CO activation in Fischer-Tropsch synthesis catalysts [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 10 - 17 .
FANG Y , SUN H , PENG W , et al . Effect of surface [Cu 4 O ] moieties on the activity of Cu-based catalysts [J ] . ACS Catalysis , 2022 , 12 ( 9 ): 5162 - 5173 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构