浏览全部资源
扫码关注微信
西南化工研究设计院有限公司 工业排放气综合利用国家重点实验室,国家碳一化学工程技术研究中心, 四川 成都 610225
王光永(1989—),博士,高级工程师,研究方向为低碳化工技术,E-mail:wangguangyong@swchem.com。
李克兵(1968—),硕士,正高级工程师,研究方向为变压吸附与低碳化工技术,E-mail:lkbpsa@swchem.com。
收稿日期:2024-07-29,
修回日期:2024-08-30,
纸质出版日期:2025-02-25
移动端阅览
王光永,李荣,姚佩等.乙烯羰基化催化反应工艺研究[J].低碳化学与化工,2025,50(02):38-44.
WANG Guangyong,LI Rong,YAO Pei,et al.Research on catalytic reaction process of ethylene carbonylation[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):38-44.
王光永,李荣,姚佩等.乙烯羰基化催化反应工艺研究[J].低碳化学与化工,2025,50(02):38-44. DOI: 10.12434/j.issn.2097-2547.20240316.
WANG Guangyong,LI Rong,YAO Pei,et al.Research on catalytic reaction process of ethylene carbonylation[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):38-44. DOI: 10.12434/j.issn.2097-2547.20240316.
作为乙烯两步法制甲基丙烯酸甲酯(MMA)的重要步骤,乙烯羰基化制丙酸甲酯通常采用贵金属、膦配体与酸性助剂构成的均相催化体系,常用的酸性助剂磺酸有利于提升催化剂活性与稳定性,但同时也具有设备腐蚀与磺酸累积等工艺问题。通过优化催化体系,确定了维持乙烯羰基化反应性能所需的适宜磺酸添加量,并进一步引入了第二助剂替代磺酸。针对反应气氛与反应液组成、原料微量杂质以及反应釜体积等工艺开发的核心要素进行了影响评价,并探讨了该催化体系在乙烯高碳醇羰基化方面的应用潜力。结果表明,在反应温度100 ℃、操作压力1.2 MPa条件下,磺酸添加量(质量分数,下同)为0.0145%时,转化频率(
TOF
)达44400 h
-1
;反应液中磺酸添加量降低至0.0070%时,
TOF
显著降低至34868 h
-1
。维持磺酸添加量为约0.0070%,并引入添加
量为0.0304%~0.0596%的第二助剂无助于乙烯羰基化反应性能的恢复。反应液中无磺酸添加、第二助剂添加量为0.0595%时,
TOF
降低至11941 h
-1
,但当第二助剂添加量提高到2.0125%时,
TOF
升至38758 h
-1
,反应后釜液无明显沉淀,催化剂稳定性良好(
TOF
均为反应3 h的平均值)。在一定范围内,CO体积分数和甲醇含量越高,乙烯羰基化反应速率越快。反应液中添加质量分数为0.1%的乙醇、反应气氛中添加体积分数为0.442%的H
2
,未对乙烯羰基化反应速率造成明显影响,可降低对原料中甲醇、乙烯和CO的纯化要求。反应釜体积由250 mL放大至1000 mL,反应3 h后,
TOF
与总转化数(
TON
)等反应指标基本一致,
TON
均约为130000,丙酸甲酯选择性均为99%以上。该研究可为乙烯羰基化反应工艺的开发提供借鉴。
As the key step in the two-step synthesis of methyl methacrylate (MMA) from ethylene
ethylene carbonylation to produce methyl propionate usually uses a homogeneous catalytic system composed of precious metals
phosphine ligands and acidic additives. Sulfonic acid
as the generally used acidic additive
is beneficial for improving catalyst activity and stability
but also has process problems such as equipment corrosion and sulfonic acid accumulation. By optimizing the catalytic system
the appropriate amount of sulfonic acid required to maintain the performance of ethylene carbonylation reaction was determined
and a second additive to replace sulfonic acid was further introduced. An impact evaluation was conducted on the core elements of process development
including reaction atmosphere and solution compositions
trace impurities and reactor volumes. The potential application of this catalytic system in ethylene and high carbon alcohol carbonylation was also explored. The results show that under the conditions of reaction temperature of 100 ℃ and operating pressure of 1.2 MPa
when the amount of sulfonic acid added (mass fraction
the same below) is 0.0145%
the turnover frequency (
TOF
) reaches 44400 h
-1
. The
TOF
significantly decreases to 34868 h
-1
when the amount of sulfonic acid added in the reaction solution decreases to 0.0070%. Maintaining the amount of sulfonic acid added at appr
oximately 0.0070% and introducing a second additive with an addition amount of 0.0304% to 0.0596% does not contribute to the recovery of ethylene carbonylation reaction performance. When no sulfonic acid added and the amount of the second additive added is 0.0595%
the
TOF
decreases to 11941 h
-1
but when the amount of the second additive added increases to 2.0125%
the
TOF
increases to 38758 h
-1
. After the reaction
there is no obvious precipitation in the solution
and the catalyst stability is good (
TOF
is the average value of reaction for 3 h ). Within a certain range
the higher the CO volume fraction and methanol content
the faster the rate of ethylene carbonylation reaction. Adding 0.1% (mass fraction) ethanol to the reaction solution and 0.442% (volume fraction) H
2
to the reaction gas does not significantly affect the ethylene carbonylation reaction rate
thus reducing the purification requirements for the methanol
ethylene and CO in raw materials. After enlarging the reactor volume from 250 mL to 1000 mL
the reaction indicators such as
TOF
and turnover number (
TON
) are basically consistent
with a
TON
about 130000 and a selectivity of over 99% for methyl propionate after reaction for 3 h. This study can provide reference for the development of ethylene carbonylation reaction processes.
GALVANIN F , PSYRRAKI C , MORRIS T , et al . Development of a kinetic model of ethylene methoxycarbonylation with homogeneous Pd catalyst using a capillary microreactor [J ] . Chemical Engineering Journal , 2017 , 329 : 25 - 34 .
王光永 , 李荣 , 鄢义 , 等 . 羟醛缩合法制甲基丙烯酸甲酯催化剂研究及技术经济性分析 [J ] . 化工进展 , 2021 , 40 ( 5 ): 2574 - 2580 .
WANG G Y , LI R , YAN Y , et al . Catalyst and technical-economic analysis for the synthesis of methyl methacrylate by aldol condensation [J ] . Chemical Industry and Engineering Progress , 2021 , 40 ( 5 ): 2574 - 2580 .
刘金成 , 陈谦 , 刘玉佩 , 等 . 甲基丙烯酸甲酯的合成技术研究进展 [J ] . 中国塑料 , 2022 , 36 ( 1 ): 178 - 183 .
LIU J C , CHEN Q , LIU Y P , et al . Research progress in synthesis technologies of methyl methacrylate [J ] . China Plastics , 2022 , 36 ( 1 ): 178 - 183 .
李斌 , 解铭 , 齐翔 , 等 . 乙烯路线制备甲基丙烯酸甲酯研究进展 [J ] . 化工进展 , 2019 , 38 ( 4 ): 1739 - 1745 .
LI B , XIE M , QI X , et al . Progress in preparation of methyl methacrylate by ethylene route [J ] . Chemical Industry and Engineering Progress , 2019 , 38 ( 4 ): 1739 - 1745 .
王刚 , 李增喜 , 李春山 . 温和条件下丙酸甲酯和甲醇一步合成甲基丙烯酸甲酯 [J ] . 中国科学: 化学 , 2021 , 51 ( 2 ): 235 - 241 .
WANG G , LI Z X , LI C S . One-step synthesis of methyl methacrylate from methyl propionate and methanol under mild condition [J ] . SCIENTIA SINICA (Chimica) , 2021 , 51 ( 2 ): 235 - 241 .
VAVASORI A , CAVINATO G , TONIOLO L . Effect of a hydridesource (water, hydrogen, p -toluenesulfonic acid) on the hydroesterifi-cation of ethylene to methyl propionate using a Pd(PPh 3 ) 2 (TsO) 2 (TsO = p -toluenesulfonate anion) catalyst precursor [J ] . Journal of Molecular Catalysis A: Chemical , 2001 , 176 ( 1/2 ): 11 - 18 .
谭平华 , 肖春妹 , 熊国炎 , 等 . 乙烯羰基化合成研究进展 [J ] . 现代化工 , 2011 , 31 ( 9 ): 28 - 31 .
TAN P H , XIAO C M , XIONG G Y , et al . Progress in carbonylation synthesis of ethylene [J ] . Modern Chemical Industry , 2011 , 31 ( 9 ): 28 - 31 .
李军 , 熊国焱 , 赖崇伟 , 等 . 乙烯羰基合成丙酸甲酯催化剂钯含量的测定 [J ] . 天然气化工—C1化学与化工 , 2013 , 38 ( 6 ): 92 - 94 .
LI J , XIONG G Y , LAI C W , et al . Determination of palladium in the catalyst for synthesis of methyl propionate from ethylene by carbonylation [J ] . Natural Gas Chemical Industry , 2013 , 38 ( 6 ): 92 - 94 .
CLEGG W , EASTHAM G , ELSEGOOD M , et al . Highly active and selective catalysts for the production of methyl propanoate via the methoxycarbonylation of ethene [J ] . Chemical Communications , 2000 , 31 ( 4 ): 1877 - 1878 .
璐彩特国际英国有限公司 . 一种用于羰基化乙烯的连续方法 : 201280063887.8 [P ] . 2014-08-27 .
Lucite International UK Limited . A continuous method for carbonylation of ethylene : 201280063887.8 [P ] . 2014-08-27 .
ZHAO K , WANG H L , LI T , et al . Identification of a potent palladium-aryldiphosphine catalytic system for high-performance carbonylation of alkenes [J ] . Nature Communications , 2024 , 15 : 1 - 11 .
董甜丽 . 钌催化下CO 2 为羰基源的氢酯化反应 [D ] . 天津 : 河北工业大学 , 2019 .
DONG T L . Hydrogen esterification of carbon dioxide as carbonyl source catalyzed by Ru [D ] . Tianjin : Hebei University of Technology , 2019 .
康裕 . 离子液体中CO 2 作为C 1 合成丙酸甲酯的研究 [D ] . 天津 : 河北工业大学 , 2018 .
KANG Y . Synthesis of methyl propionate based on CO 2 as C 1 in ioninc liquid [D ] . Tianjin : Hebei University of Technology , 2018 .
李艳茹 . 乙烯氢酯基化合成丙酸甲酯的RuCl 3 催化体系研究 [D ] . 上海 : 中国科学院大学 , 2019 .
LI Y R . The study of RuCl 3 catalyst systems for synthesizing methyl propionate by hydro-esterification of ethylene [D ] . Shanghai : University of Chinese Academy of Sciences , 2019 .
徐魁 , 崔英德 , 邓光海 , 等 . 乙烯均相羰基合成丙酸甲酯的催化研究 [J ] . 精细石油化工 , 1999 , ( 1 ): 31 - 33 .
XU K , CUI Y D , DENG G H , et al . Catalytic study synthesis of methyl propionate by carbonylation of ethylene in homogeneous phase [J ] . Speciality Petrochemicals , 1999 , ( 1 ): 31 - 33 .
徐魁 . 乙烯氢酯基化合成丙酸酯的催化及反应工程研究 [D ] . 广州 : 华南理工大学 , 1998 .
XU K . The studies of catalysis and chemical reaction engineering on hydroesterification of ethylene to synthesis of propionic ester [D ] . Guangzhou : South China University of Technology , 1998 .
张勇 , 吴玉塘 . 甲酸甲酯与乙烯加氢酯化合成丙酸甲酯 [J ] . 天然气化工—C1化学与化工 , 1996 , 21 ( 1 ): 5 - 8 .
ZHANG Y , WU Y T . Preparation of methyl propionate from ethylene and methyl formate by hydroesterification [J ] . Natural Gas Chemical Industry , 1996 , 21 ( 1 ): 5 - 8 .
赵亮富 , 吕朝晖 , 赵玉龙 , 等 . 甲醇羰基化中溶剂的不同作用 [J ] . 化工进展 , 2001 , ( 1 ): 26 - 28 .
ZHAO L F , LU Z H , ZHAO Y L . Effects of various solvent in carbonylation of methanol [J ] . Chemical Industry and Engineering Progress , 2001 , 1 : 26 - 28 .
廖列文 , 崔英德 , 尹国强 . 乙烯氢酯基化合成丙酸甲酯催化反应动力学研究 [J ] . 天然气化工—C1化学与化工 , 2004 , 29 ( 5 ): 26 - 31 .
LIAO L W , CUI Y D , YIN G Q . Kinetic study of catalytic reaction for hydroesterification of ethylene to propionic ester [J ] . Natural Gas Chemical Industry , 2004 , 29 ( 5 ): 26 - 31 .
璐彩特国际英国有限公司 . 一种用于乙烯的羰基化的连续方法 : 201080062999.2 [P ] . 2012-10-17 .
Lucite International UK Limited . A continuous method for carbonylation of ethylene : 201080062999.2 [P ] . 2012-10-17 .
韩淑萃 , 杨金杯 . 丙酸甲酯和甲醇共沸物萃取精馏分离工艺的研究 [J ] . 现代化工 , 2018 , 38 ( 7 ): 214 - 218 .
HAN S C , YANG J B . Separation of methyl propionate-methanol azeotrope by extractive distillation [J ] . Modern Chemical Industry , 2018 , 38 ( 7 ): 214 - 218 .
李小平 , 郝连升 , 李伟善 , 等 . 丙酸乙酯对LiFePO 4 锂离子电池低温性能的影响 [J ] . 电化学 , 2013 , 19 ( 3 ): 237 - 244 .
LI X P , HAO L S , LI W S , et al . Effect of ethyl propionate on low-temperature performance of LiFePO 4 -based Li-ion b attery [J ] . Journal of Electrochemistry , 2013 , 19 ( 3 ): 237 - 244 .
龚楚儒 , 王春照 , 董镜华 , 等 . 水合硫酸铁催化合成丙酸丁酯 [J ] . 工业催化 , 2006 , 14 ( 1 ): 20 - 22 .
GONG C R , WANG C Z , DONG J H , et al . Synthesis of n -butyl propionate catalyzed by ferric sulfate hydrate [J ] . Industrial Catalysis , 2006 , 14 ( 1 ): 20 - 22 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构