浏览全部资源
扫码关注微信
1.北京石油化工学院 机械工程学院,北京 102617
2.北京京辉绿氢新能源科技有限公司,北京 102502
应强(1997—),硕士研究生,研究方向为金属氢化物固态储氢装置的应用,E-mail:1419844852@qq.com。
李建立(1979—),博士,副教授,研究方向为储氢技术,E-mail:lijianli_gz@bipt.edu.cn。
收稿日期:2024-07-11,
修回日期:2024-08-23,
纸质出版日期:2025-04-25
移动端阅览
应强,李建立,李敬法等.外部控温圆柱形固态储氢罐吸放氢性能实验研究[J].低碳化学与化工,2025,50(04):149-156.
YING Qiang,LI Jianli,LI Jingfa,et al.Experimental study on hydrogen absorption and desorption performances of external temperature-controlled cylindrical solid-state hydrogen storage tanks[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):149-156.
应强,李建立,李敬法等.外部控温圆柱形固态储氢罐吸放氢性能实验研究[J].低碳化学与化工,2025,50(04):149-156. DOI: 10.12434/j.issn.2097-2547.20240294.
YING Qiang,LI Jianli,LI Jingfa,et al.Experimental study on hydrogen absorption and desorption performances of external temperature-controlled cylindrical solid-state hydrogen storage tanks[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):149-156. DOI: 10.12434/j.issn.2097-2547.20240294.
外部控温圆柱形固态储氢罐具有结构简单、成本低、易于批量生产和可串并联组合应用等优势。利用自主设计的固态储放氢性能测试装置,对两个具有不同长径比的圆柱形储氢罐的吸放氢性能进行了测试分析,旨在评估其理论储氢性能的实际利用程度,并考察吸放氢温度和压力等参数对其吸放氢性能的影响。结果表明,在不同吸放氢工况下,两实验储罐的吸放氢速率均呈现“短时陡升-短时陡降-缓慢趋零”的3阶段特征,累计吸放氢量随时间均呈现“短时陡升-缓慢爬升”的两阶段特征,其中“短时陡升”阶段吸氢时长占吸氢总时长的不足2%,该阶段吸氢速率最高为6.545 L/s,“缓慢趋零”阶段的吸氢速率不足0.5 L/s;由于合金床层活化不完全、芯部换热不充分等原因,两储氢罐吸氢饱和度均小于60%,但可逆放氢率可达90%以上。在初始床层温度不变时,吸放氢总时长和累计吸放氢量均随初始压力升高而增大;在初始吸放氢压力不变时,吸氢总时长、累计吸氢量和吸氢饱和度均与合金初始床层温度负相关,而放氢总时长、累计放氢量和可逆放氢率均与初始床层温度正相关;适当增大储氢罐长径比,可提高综合换热效果,从而改善吸放氢性能。
External temperature-controlled cylindrical solid hydrogen storage tanks have advantages of simple structure
low cost
easy mass production
and series parallel combination applications. The hydrogen absorption and desorption performance of two cylindrical hydrogen storage tanks with different aspect ratios were tested and analyzed by a self-designed solid-state hydrogen absorption and desorption performance testing device. The aim is to evaluate the actual utilization of their theoretical hydrogen storage capacity and investigate influence of parameters such as hydrogen absorption and desorption temperature and pressure on their hydrogen absorption and desorption performance. The results show that under different hydrogen absorption and desorption conditions
the hydrogen absorption and desorption rate of the two experimental storage tanks exhibites a three-stage characteristic of “short-term steep rise
short-term steep fall and slowly approaching zero”
while the cumulative hydrogen absorption and desorption amount shows a two-stage characteristic of “short-term steep rise and slow climb” over time. The hydrogen absorption time in the “short-term steep rise” stage accounts for less than 2% of the total hydrogen absorption time. The maximum hydrogen absorption rate in this stage is 6.545 L/s
and the hydrogen absorption rate in the “slowly approaching zero” stage is less than 0.5 L/s. Due to incomplete activation of the alloy bed and insufficient heat transfer in the core
within the operating range of this article
the hydrogen absorption saturation is less than 60%
and the reversible hydrogen desorption rate can reach over 90%. When the initial temperature of the bed remains constant
both the total hydrogen absorption and release time and the cumulative hydrogen absorption and release amount increase with the increase of the initial pressure difference. When the initial hydrogen absorption and desorption pressure remains constant
the total hydrogen absorption time
cumulative hydrogen absorption amount
and hydrogen absorption saturation are all negatively correlated with the initial temperature of the alloy bed
while the total hydrogen release time
cumulative hydrogen release amount
and reversible hydrogen release rate are positively correlated with the initial temperature of the bed. Appropriately increasing the aspect ratio can significantly improve the comprehensive heat transfer efficiency
thereby significantly enhancing the hydrogen absorption and desorption performance.
张晓飞 , 蒋利军 , 叶建华 , 等 . 固态储氢技术的研究进展 [J ] . 太阳能学报 , 2022 , 43 ( 6 ): 345 - 354 .
ZHANG X F , JIANG L J , YE J H , et al . Research progress of solid-state hydrogen storage technology [J ] . Acta Energiae Solaris Sinica , 2022 , 43 ( 6 ): 345 - 354 .
李海波 . 固态储氢技术现状与发展趋势分析 [J ] . 现代化工 , 2024 , 44 ( 4 ): 13 - 18 .
LI H B . Development trend and present status of solid state hydrogen storage technology [J ] . Modern Chemical Industry , 2024 , 44 ( 4 ): 13 - 18 .
YAN H G , ZHANG W D , KANG J D , et al . The necessity and feasibility of hydrogen storage for large-scale, long-term energy storage in the new power system in China [J ] . Energies , 2023 , 16 ( 13 ): 4837 .
RUSMAN N A A , DAHARI M . A review on the current progress of metal hydrides material for solid-state hydrogen storage applications [J ] . International Journal of Hydrogen Energy , 2016 , 41 ( 28 ): 12108 - 12126 .
PISTIDDA C . Solid-state hydrogen storage for a decarbonized society [J ] . Hydrogen , 2021 , 2 ( 4 ): 428 - 443 .
XU Y H , ZHOU Y , LI Y T , et al . Research progress and application prospects of solid-state hydrogen storage technology [J ] . Molecules , 2024 , 29 ( 8 ): 1767 .
LEE S Y , LEE J H , KIM Y H , et al . Recent progress using solid-state materials for hydrogen storage: A short review [J ] . Processes , 2022 , 10 ( 2 ): 304 .
KHAFIDZ N A Z , YAAKOB Z , LIM K L , et al . The kinetics of lightweight solid-state hydrogen storage materials: A review [J ] . International Journal of Hydrogen Energy , 2016 , 41 ( 30 ): 13131 - 13151 .
KUMAR A , MUTHUKUMAR P , SHARMA P , et al . Absorption based solid state hydrogen storage system: A review [J ] . Sustainable Energy Technologies and Assessments , 2022 , 52 : 102204 .
DARZI A A R , AFROUZI H H , ALIZIZADEH E , et al . Numerical simulation of heat and mass transfer during absorption of hydrogen in metal hydride tank [J ] . Heat Transfer—Asian Research , 2017 , 46 ( 1 ): 75 - 90 .
JEMNI A , NASRALLAH S B , LAMLOUMI J . Experimental and theoretical study of ametal-hydrogen reactor [J ] . International Journal of Hydrogen Energy , 1999 , 24 ( 7 ): 631 - 644 .
SINGH A , MAIYA M P , MURTHY S S . Experiments on solid state hydrogen storage device with a finned tube heat exchanger [J ] . International Journal of Hydrogen Energy , 2017 , 42 ( 22 ): 15226 - 15235 .
SINGH A , MAIYA M P , MURTHY S S . Performance of a solid state hydrogen storage device with finned tube heat exchanger [J ] . International Journal of Hydrogen Energy , 2017 , 42 ( 43 ): 26855 - 26871 .
MELLOULI S , ASKRI F , DHAOU H , et al . A novel design of a heat exchanger for a metal-hydrogen reactor [J ] . International Journal of Hydrogen Energy , 2007 , 32 ( 15 ): 3501 - 3507 .
MELLOULI S , ASKRI F , DHAOU H , et al . Numerical simulation of heat and mass transfer in metal hydride hydrogen storage tanks for fuel cell vehicles [J ] . International Journal of Hydrogen Energy , 2010 , 35 ( 4 ): 1693 - 1705 .
CHANG H , TAO Y B , YE H . Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 52 ): 20006 - 20019 .
ARDAHAIE S S , HOSSEINI M J , EISAPOUR M , et al . A novel porous metal hydride tank for hydrogen energy storage and consumption assisted by PCM jackets and spiral tubes [J ] . Journal of Cleaner Production , 2021 , 311 : 127674 .
张贺 , 林繁鑫 , 刘勇 , 等 . Ti-Mn系储氢合金的研究进展 [J ] . 硅酸盐学报 , 2024 , 52 ( 6 ): 1873 - 1883 .
ZHANG H , LIN F X , LIU Y , et al . Research progress of Ti-Mn hydrogen storage alloys [J ] . Journal of the Chinese Ceramic Society , 2024 , 52 ( 6 ): 1873 - 1883 .
REILLY J J , WISWALL R H . Formation and properties of iron titanium hydride [J ] . Inorganic Chemistry , 1974 , 13 ( 1 ): 218 - 222 .
ELKHATIB R , LOUAHLIA H . Metal hydride cylindrical tank for energy hydrogen storage: Experimental and computational modeling investigations [J ] . Applied Thermal Engineering , 2023 , 230 : 120756 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构