浏览全部资源
扫码关注微信
中石化(大连)石油化工研究院有限公司,辽宁 大连 116045
殷冬冬(1990—),博士,工程师,研究方向为炼油化工,E-mail:yindongdong.fshy@sinopec.com。
收稿日期:2024-05-26,
修回日期:2024-06-26,
纸质出版日期:2025-02-25
移动端阅览
殷冬冬,张熙,周隆昌.DBD等离子体辅助甲烷无氧偶联技术研究进展[J].低碳化学与化工,2025,50(02):15-24.
YIN Dongdong,ZHANG Xi,ZHOU Longchang.Research progress on DBD plasma-assisted non-oxidative coupling of methane technology[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):15-24.
殷冬冬,张熙,周隆昌.DBD等离子体辅助甲烷无氧偶联技术研究进展[J].低碳化学与化工,2025,50(02):15-24. DOI: 10.12434/j.issn.2097-2547.20240233.
YIN Dongdong,ZHANG Xi,ZHOU Longchang.Research progress on DBD plasma-assisted non-oxidative coupling of methane technology[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):15-24. DOI: 10.12434/j.issn.2097-2547.20240233.
传统甲烷热催化转化过程反应条件苛刻,而等离子体中的高能电子在低温条件下即可与甲烷分子碰撞生成自由基,并经重组反应生成C
2
烃和氢气等。介质阻挡放电(DBD)等离子体辅助甲烷无氧偶联因反应器结构简单且电场分布均匀,成为甲烷高价值利用的潜力技术。综述了DBD等离子体辅助甲烷无氧偶联技术的研究进展,对等离子体系中甲烷活化机理及反应过程进行了梳理,并从反应器结构、工艺参数和催化剂等角度出发,分析了影响甲烷转化率和产物选择性的关键因素,指出甲烷活化反应机理、等离子体与催化剂协同效应,以及反应器结构和工艺流程优化等是未来的重要研究方向。以上可为甲烷转化技术研究提供参考。
The traditional thermal catalytic conversion of methane requires harsh reaction conditions
while high-energy electrons in plasma can collide with methane molecules to generate radicals at low temperatures
leading to the formation of C
2
hydrocarbons and hydrogen through recombination reactions. Dielectric barrier discharge (DBD) plasma-assisted non-oxidative coupling of methane has become a potential technology for high-value utilization of methane due to its simple reactor structure and uniform electric field distribution. The research progress on DBD plasma-assisted non-oxidative coupling of methane technology was reviewed
the activation mechanism and reaction pathway of methane in plasma systems were elucidated
and the key factors affecting methane conversion rate and product selectivity were analyzed from the perspectives of reactor structure
process parameters and catalysts. It points out that the activation mechanism of methane
the synergistic effect between plasma and catalysts
as well as the optimization of reactor structure and process flow
are important research directions for the future. This can provide a reference for the research on methane conversion technology.
XU Y X , CHEN E Q , TANG J W . Photocatalytic methane conversion to high-value chemicals [J ] . Carbon Future , 2024 , 1 ( 1 ): 9200004 .
WANG B W , SUAZO S A , TORRES Y P , et al . Advances in methane conversion processes [J ] . Catalysis Today , 2017 , 285 : 147 - 158 .
FENG J Y , SUN X , LI Z , et al . Plasma-assisted reforming of methane [J ] . Advanced Science , 2022 , 9 ( 34 ): 2203221 .
白帆 , 徐向亚 , 刘东兵 , 等 . 甲烷转化制乙烯技术研究进展 [J ] . 工业催化 , 2023 , 31 ( 12 ): 16 - 24 .
BAI F , XU X Y , LIU D B , et al . Research progress on methane conversion to ethylene technology [J ] . Industrial Catalysis , 2023 , 31 ( 12 ): 16 - 24 .
TONKS L , LANGMUIR I . Oscillations in ionized gases [J ] . Physical Review , 1929 , 33 ( 2 ): 195 - 210 .
SHI C , WANG S , GE X , et al . A review of different catalytic systems for dry reforming of methane: Conventional catalysis-alone and plasma-catalytic system [J ] . Journal of CO 2 Utilization , 2021 , 46 : 101462 .
王佳杰 , 毛震波 , 李军 , 等 . 等离子体CO 2 -CH 4 干重整反应技术进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 78 - 88 .
WANG J J , MAO Z B , LI J , et al . Progress in plasma-driven dry reforming of CO 2 and CH 4 [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 78 - 88 .
PARK S , LEE M , BAE J , et al . Plasma-assisted non-oxidative conversion of methane over Mo/HZSM-5 catalyst in DBD reactor [J ] . Topics in Catalysis , 2017 , 60 : 735 - 742 .
JO S , LEE D H , KANG W S , et al . Effect of packing material on methane activation in a dielectric barrier discharge reactor [J ] . Physics of Plasmas , 2013 , 20 ( 12 ): 123507 .
LIU C J , MALLINSON R , LOBBAN L . Non-oxidative methane conversion to acetylene over zeolite in a low temperature plasma [J ] . Journal of Catalysis , 1998 , 179 ( 1 ): 326 - 334 .
NOZAKI T , OKAZAKI K . Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications [J ] . Catalysis Today , 2013 , 211 : 29 - 38 .
PARK D , KIM J , KIM T . Nonthermal plasma-assisted direct conversion of methane over NiO and MgO catalysts supported on SBA-15 [J ] . Catalysis Today , 2018 , 299 : 86 - 92 .
ISTADI I , AMIN N A S . Modelling and optimization of catalytic-dielectric barrier discharge plasma reactor for methane and carbon dioxide conversion using hybrid artificial neural network—Genetic algorithm technique [J ] . Chemical Engineering Science , 2007 , 62 ( 23 ): 6568 - 6581 .
陈焕浩 , 范晓雷 . 非热等离子体催化转化C1分子及其催化剂研究进展 [J ] . 化工进展 , 2021 , 40 ( 6 ): 3034 - 3045 .
CHEN H H , FAN X L . Review on non-thermal plasma (NTP) catalytic conversion of C1 molecules and its catalysts [J ] . Chemical Industry and Engineering Progress , 2021 , 40 ( 6 ): 3034 - 3045 .
SCAPINELLO M , DELIKONSTANTIS E , STEFANIDIS G D . The panorama of plasma-assisted non-oxidative methane reforming [J ] . Chemical Engineering and Processing: Process Intensification , 2017 , 117 : 120 - 140 .
NOZAKI T , HATTORI A , OKAZAKI K . Partial oxidation of methane using a microscale non-equilibrium plasma reactor [J ] . Catalysis Today , 2004 , 98 ( 4 ): 607 - 616 .
KHEIROLLAHIVASH M , RASHIDI F , MOSHREFI M M . Hydrogen production from methane decomposition using a mobile and elongating arc plasma reactor [J ] . Plasma Chemistry and Plasma Processing , 2019 , 39 ( 2 ): 445 - 459 .
HORVATH G , MASON N J , POLACHOVA L , et al . Packed bed DBD discharge experiments in admixtures of N 2 and CH 4 [J ] . Plasma Chemistry and Plasma Processing , 2010 , 30 ( 5 ): 565 - 577 .
YANG Y . Direct non-oxidative methane conversion by non-thermal plasma: Modeling study [J ] . Plasma Chemistry and Plasma Processing , 2003 , 23 ( 2 ): 327 - 346 .
KOGELSCHATZ U , ELIASSON B , EGLI W . From ozone generators to flat television screens: History and future potential of dielectric-barrier discharges [J ] . Pure & Applied Chemistry , 1999 , 71 ( 10 ): 1819 - 1828 .
张维 , 汪宗御 , 郭玉 , 等 . 大气压介质阻挡放电及协同催化剂脱硝研究进展 [J ] . 化工进展 , 2022 , 41 ( 12 ): 6644 - 6655 .
ZHANG W , WANG Z Y , GUO Y , et al . Research progress of NO x removal by combination of atmospheric pressure dielectric barrier discharge and catalysis [J ] . Chemical Industry and Engineering Progress , 2022 , 41 ( 12 ): 6644 - 6655 .
KONNO K , ONOE K , TAKIGUCHI Y , et al . Conversion of methane by an electric barrier-discharge plasma using an inner electrode with discharge disks set at 5 mm intervals [J ] . Chemical Engineering Research and Design , 2015 , 95 : 144 - 149 .
WANG B W , YAN W J , GE W J , et al . Methane conversion into higher hydrocarbons with dielectric barrier discharge micro-plasma reactor [J ] . Journal of Energy Chemistry , 2013 , 22 ( 6 ): 876 - 882 .
NISHIDA Y , MEMBER S , CHIANG H C , et al . Efficient production of hydrogen by DBD type plasma discharges [J ] . IEEE Transactions on Plasma Science , 2014 , 42 ( 12 ): 3765 - 3771 .
WANG B W , CAO X L , YANG K H , et al . Conversion of methane through dielectric-barrier discharge plasma [J ] . Frontiers of Chemical Engineering in China , 2008 , 2 ( 4 ): 373 - 378 .
SALEEM F , KENNEDY J , DAHIRU U H , et al . Methane conversion to H 2 and higher hydrocarbons using non-thermal plasma dielectric barrier discharge reactor [J ] . Chemical Engineering and Processing-Process Intensification , 2019 , 142 : 107557 .
LIEBERMAN M A , LICHTENBERG A J . Principles of plasma discharges and materials processing [M ] . New York : John Wiley & Sons, Inc , 2005 : 1 - 22 .
KOGELSCHATZ U . Dielectric-barrier discharges: Their history, discharge physics, and industrial applications [J ] . Plasma Chemistry and Plasma Processing , 2003 , 23 ( 1 ): 1 - 46 .
ISTADI , AMIN N A S . Co-generation of synthesis gas and C 2+ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review [J ] . Fuel , 2006 , 85 ( 5/6 ): 577 - 592 .
LV J , LI Z H . Conversion of natural gas to C 2 hydrocarbons via cold plasma technology [J ] . Journal of Natural Gas Chemistry , 2010 , 19 ( 4 ): 375 - 379 .
XU C , TU X . Plasma-assisted methane conversion in an atmospheric pressure dielectric barrier discharge reactor [J ] . Journal of Energy Chemistry , 2013 , 22 ( 3 ): 420 - 425 .
LIU S Y , MEI D H , SHEN Z , et al . Nonoxidative conversion of methane in a dielectric barrier discharge reactor: Prediction of reaction performance based on neural network model [J ] . The Journal of Physical Chemistry C , 2014 , 118 ( 20 ): 10686 - 10693 .
JO S , LEE D H , KANG W S , et al . Methane activation using noble gases in a dielectric barrier discharge reactor [J ] . Physics of Plasmas , 2013 , 20 ( 8 ): 083509 .
JO S , LEE D H , KIM K T , et al . Methane activation using Kr and Xe in a dielectric barrier discharge reactor [J ] . Physics of Plasmas , 2014 , 21 ( 10 ): 103504 .
JO S , HOON LEE D , SONG Y H . Product analysis of methane activation using noble gases in a non-thermal plasma [J ] . Chemical Engineering Science , 2015 , 130 : 101 - 108 .
陈琳 . 低温等离子体-催化选择性转化甲烷研究进展 [J ] . 天然气化工—C1化学与化工 , 2011 , 36 ( 2 ): 70 - 74 .
CHEN L . Advance in the research on methane selective conversion by cold plasma and catalysis [J ] . Natural Gas Chemical Industry , 2011 , 36 ( 2 ): 70 - 74 .
AN H T Q , HUU T P , VAN T L , et al . Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: Toluene removal [J ] . Catalysis Today , 2011 , 176 ( 1 ): 474 - 477 .
MASLOVA V , NASTASE R , VERYASOV G , et al . Current status and challenges of plasma and plasma-catalysis for methane coupling: A review [J ] . Progress in Energy and Combustion Science , 2024 , 101 : 101096 .
TU X , GALLON H J , TWIGG M V , et al . Dry reforming of methane over a Ni/Al 2 O 3 catalyst in a coaxial dielectric barrier discharge reactor [J ] . Journal of Physics D: Applied Physics , 2011 , 44 ( 27 ): 274007 .
GALLON H J , TU X , WHITEHEAD J C . Effects of reactor packing materials on H 2 production by CO 2 reforming of CH 4 in a dielectric barrier discharge [J ] . Plasma Processes and Polymers , 2011 , 9 ( 1 ): 90 - 97 .
KASINATHAN P , PARK S , CHOI W C , et al . Plasma-enhanced methane direct conversion over particle-size adjusted MO x /Al 2 O 3 (M = Ti and Mg) catalysts [J ] . Plasma Chemistry and Plasma Processing , 2014 , 34 ( 6 ): 1317 - 1330 .
ZHANG Q Z , WANG W Z , BOGAERTS A . Importance of surface charging during plasma streamer propagation in catalyst pores [J ] . Plasma Sources Science and Technology , 2018 , 27 : 065009 .
TAHERASLANI M , GARDENIERS H . Coupling of CH 4 to C 2 hydrocarbons in a packed bed DBD plasma reactor: The effect of dielectric constant and porosity of the packing [J ] . Energies , 2020 , 13 ( 2 ): 468 - 487 .
JO S , KIM T , LEE D H , et al . Effect of the electric conductivity of a catalyst on methane activation in a dielectric barrier discharge reactor [J ] . Plasma Chemistry and Plasma Processing , 2014 , 34 ( 1 ): 175 - 186 .
TAHERASLANI M , GARDENIERS H . Plasma catalytic conversion of CH 4 to alkanes, olefins and H 2 in a packed bed DBD reactor [J ] . Processes , 2020 , 8 ( 7 ): 774 .
MONCADA N G , ROOIJ G V , CENTS T , et al . Catalyst-assisted DBD plasma for coupling of methane: Minimizing carbon-deposits by structured reactors [J ] . Catalysis Today , 2020 , 369 : 210 - 220 .
GORSKA A , KRAWCZYK K , JODZIS S , et al . Non-oxidative methane coupling using Cu/ZnO/Al 2 O 3 catalyst in DBD [J ] . Fuel , 2011 , 90 ( 5 ): 1946 - 1952 .
GERCEKER D , MOTAGAMWALA A H , DONES K R R , et al . Methane conversion to ethylene and aromatics on PtSn catalysts [J ] . ACS Catalysis , 2017 , 7 ( 3 ): 2088 - 2100 .
NGUYEN H M , GORKY F , GUTHRIE S , et al . Plasma catalytic non-oxidative methane conversion to hydrogen and value-added hydrocarbons on zeolite 13X [J ] . Energy Conversion and Management , 2023 , 286 : 117082 .
YASHNIK S A , URZHUNTSEV G A , STADNICHENKO A I , et al . Effect of Pd-precursor and support acid properties on the Pd electronic state and the hydrodesulfurization activity of Pd-zeolite catalysts [J ] . Catalysis Today , 2019 , 323 : 257 - 270 .
QIAO B T , WANG A Q , YANG X F , et al . Single-atom catalysis of CO oxidation using Pt 1 /FeO x [J ] . Nature Chemistry , 2011 , 3 ( 8 ): 634 - 641 .
MITCHELL S , RAMIREZ J P . Single atom catalysis: A decade of stunning progress and the promise for a bright future [J ] . Nature Communications , 2020 , 11 ( 1 ): 1 - 3 .
AYODELE O B . Resolving one of the holy grails of catalysis: Direct nonoxidative methane conversion to ethylene over plasma-assisted atomically dispersed Pt catalyst [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 98 ): 41527 - 41539 .
ACERBI N , TSANG S C E , JONES G , et al . Rationalization of interactions in precious metal/ceria catalysts using the d-band center model [J ] . Angewandte Chemie International Edition , 2013 , 52 ( 30 ): 7737 - 7741 .
HU P P , HUANG Z W , AMGHOUZ Z , et al . Electronic metal-support interactions in single-atom catalysts [J ] . Angewandte Chemie International Edition , 2014 , 53 ( 13 ): 3418 - 3421 .
LUO Z X , ZHAO G Q , PAN H G , et al . Strong metal-support interaction in heterogeneous catalysts [J ] . Advanced Energy Materials , 2022 , 12 ( 37 ): 2201395 .
WANG B , GUAN H M . Highly efficient conversion of methane to olefins via a recycle-plasma-catalyst reactor [J ] . Catalysis Letters , 2016 , 146 ( 10 ): 2193 - 2199 .
AYODELE O B , ABDULLAH A Z . Exploring kaolinite as dry methane reforming catalyst support: Influences of chemical activation, organic ligand functionalization and calcination temperature [J ] . Applied Catalysis A: General , 2019 , 576 : 20 - 31 .
AYODELE O B . Physicochemical properties of acid/base activated kaolinite modified with oxalic acid-functionalized nickel nanoparticles [J ] . Catalysis Today , 2020 , 358 : 394 - 402 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构