浏览全部资源
扫码关注微信
太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
刘婷婷(1997—),硕士研究生,研究方向为合成气催化转化,E-mail:ltt18235276804@163.com。
白 慧(1986—),博士,副教授,研究方向为合成气催化转化,E-mail:baihui@tyut.edu.cn;
黄 伟(1962—),博士,教授,研究方向为C1小分子的温和活化和高效转化,E-mail:huangwei@tyut.edu.cn。
收稿日期:2024-05-25,
修回日期:2024-07-01,
纸质出版日期:2025-04-25
移动端阅览
刘婷婷,白慧,白冰等.阶梯Cu(221)面催化还原CO制甲醇反应机理及其电子效应的理论研究[J].低碳化学与化工,2025,50(04):29-37.
LIU Tingting,BAI Hui,BAI Bing,et al.Theoretical study on reaction mechanisms and electron effects of CO catalytic reduction to methanol on stepped Cu(221) surface[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):29-37.
刘婷婷,白慧,白冰等.阶梯Cu(221)面催化还原CO制甲醇反应机理及其电子效应的理论研究[J].低碳化学与化工,2025,50(04):29-37. DOI: 10.12434/j.issn.2097-2547.20240232.
LIU Tingting,BAI Hui,BAI Bing,et al.Theoretical study on reaction mechanisms and electron effects of CO catalytic reduction to methanol on stepped Cu(221) surface[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(04):29-37. DOI: 10.12434/j.issn.2097-2547.20240232.
Cu基催化剂是一种高效还原CO制甲醇的绿色催化剂,其不同晶面的甲醇合成性能不同,因此明确其反应机理对催化剂设计及开发具有重要意义。目前稳定性最高的阶梯Cu(221)面的CO加氢制甲醇反应机理尚不明确。基于密度泛函理论,通过对比阶梯Cu(221)面CO加氢制甲醇过程中相关基元反应的活化能和反应热,明确了甲醇合成的最优路径。系统对比了活性Cu位点配位数较高的露台Cu(100)、Cu(111)面与活性Cu位点配位数较低的阶梯Cu(110)、Cu(211)、Cu(611)和Cu(221)面上CO加氢制甲醇最优反应路径中的决速步能垒(Cu(221):0.77 eV、Cu(611):0.88 eV、Cu(211):0.99 eV、Cu(110):1.04 eV、Cu(100):1.05 eV和Cu(111):1.21 eV),证实了阶梯Cu(221)面具有最优的甲醇合成性能。结合Bader电荷、态密度、差分电荷密度和晶体轨道哈密顿布居分析,从微观电子层面进一步揭示了CO活化转化过程,发现电负性更强的台阶边缘位点与关键物种之间的强静电相互作用是阶梯Cu(221)面具有较高催化活性的本质原因。
Cu based catalysts are one of efficient green catalysts for catalytic CO reduction to methanol
and different crystal surfaces of Cu based catalysts exhibit different catalytic performances. Therefore
clarifying the reaction mechanisms on different surfaces is crucial for design and development of catalysts. At present
the reaction mechanisms of stepped Cu(221) surface with the highest stability for CO hydrogenation to methanol are not clear. Based on density functional theory
the optimal pathway for methanol synthesis on the stepped Cu(221) surface was determined via compared activation energies and reaction heats of related elementary reactions. The rate determining step energy barriers during the optimal pathways of methanol synthesis over the terrace Cu(100) and Cu(111) surfaces with higher coordination numbers and stepped Cu(110)
Cu(211)
Cu(611) and Cu(221) surfaces with lower coordination numbers of Cu active sites were systematically compared (Cu(221): 0.77 eV
Cu(611): 0.88 eV
Cu(211): 0.99 eV
Cu(110): 1.04 eV
Cu(100): 1.05 eV and Cu(111): 1.21 eV). It is confirmed that stepped Cu(221) surface has the best methanol synthesis performance. Combined with Bader charge
density of state
differential charge density and Crystal Orbital Hamiltonian Popution
the CO activation and conversion process was further revealed at the microscopic electronic level. It is found that the strong electrostatic interaction between the step edge site with stronger electronegativity and key species is the essential reason for the high catalytic activity of the stepped Cu(221) surface.
ZANGENEH F T , SAHEBDELFAR S , RAVANCHI M T . Conversion of carbon dioxide to valuable petrochemicals: An approach to clean development mechanism [J ] . Journal of Natural Gas Chemistry , 2011 , 20 ( 3 ): 219 - 231 .
STEINHAUER B , KASIREDDY M R , RADNIK J , et al . Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming [J ] . Applied Catalysis A: General , 2009 , 366 ( 2 ): 333 - 341 .
吕一珉 . CO 2 加氢制甲醇铜基催化剂的研究 [D ] . 太原 : 山西大学 , 2024 .
LV Y M . Study on Cu-based catalysts for CO 2 hydrogenation to methanol [D ] . Taiyuan : Shanxi University , 2024 .
BI W F , TANG Y , LI X M , et al . One-step direct conversion of methane to methanol with water in non-thermal plasma [J ] . Communications Chemistry , 2022 , 5 : 124 .
JIN Z , WANG L , ZUIDEMA E , et al . Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol [J ] . Science , 2020 , 367 ( 6474 ): 193 - 197 .
SARVESTANI M E , NOROUZI O , DI MARIA F , et al . From catalyst development to reactor design: A comprehensive review of methanol synthesis techniques [J ] . Energy Conversion and Management , 2024 , 302 : 118070 .
卞湘海 . 合成气制甲醇研究进展 [J ] . 生物化工 , 2021 , 7 ( 4 ): 138 - 141 .
BIAN X H . Overview of methanol production from syngas [J ] . Biological Chemical Engineering , 2021 , 7 ( 4 ): 138 - 141 .
GAWANDE M B , GOSWAMI A , FELPIN F X , et al . Cu and Cu-based nanoparticles: Synthesis and applications in catalysis [J ] . Chemical Reviews , 2016 , 116 ( 6 ): 3722 - 3811 .
JIN W , WANG Y Q , LIU T , et al . CO 2 chemisorption and dissociation on flat and stepped transition metal surfaces [J ] . Applied Surface Science , 2022 , 599 : 154024 .
HENDRIKSEN B L M , ACKERMANN M D , VAN-RIJN R , et al . The role of steps in surface catalysis and reaction oscillations [J ] . Nature Chemistry , 2010 , 2 ( 9 ): 730 - 734 .
NEUGEBOHREN J , BORODIN D , HAHN H W , et al . Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces [J ] . Nature , 2018 , 558 ( 7709 ): 280 - 283 .
ZHANG J , CAO X M , HU P , et al . Density functional theory studies of ethanol decomposition on Rh(211) [J ] . The Journal of Physical Chemistry C , 2011 , 115 ( 45 ): 22429 - 22437 .
YOSHIHARA J , CAMPBELL C T . Methanol synthesis and reverse water-gas shift kinetics over Cu(110) model catalysts: Structural sensitivity [J ] . Journal of Catalysis , 1996 , 161 ( 2 ): 776 - 782 .
QI S C , LIU X Y , ZHU R R , et al . Causation of catalytic activity of Cu-ZnO for CO 2 hydrogenation to methanol [J ] . Chemical Engineering Journal , 2022 , 430 : 132784 .
JO D Y , LEE M W , HAM H C , et al . Role of the Zn atomic arrangements in enhancing the activity and stability of the kinked Cu(211) site in CH 3 OH production by CO 2 hydrogenation and dissociation: First-principles microkinetic modeling study [J ] . Journal of Catalysis , 2019 , 373 : 336 - 350 .
KOPAČ D , LIKOZAR B , HUŠ M . Catalysis of material surface defects: Multiscale modeling of methanol synthesis by CO 2 reduction on copper [J ] . Applied Surface Science , 2019 , 497 : 143783 .
SHI Y F , KANG P L , SHANG C , et al . Methanol synthesis from CO 2 /CO mixture on Cu-Zn catalysts from microkinetics-guided machine learning pathway search [J ] . Journal of the American Chemical Society , 2022 , 144 ( 29 ): 13401 - 13414 .
WANG S S , GU X K , SU H Y , et al . First-principles and microkinetic simulation studies of the structure sensitivity of Cu catalyst for methanol steam reforming [J ] . The Journal of Physical Chemistry C , 2018 , 122 ( 20 ): 10811 - 10819 .
RAYBAUD P , HAFNER J , KRESSE G , et al . Structure, energetics, and electronic properties of the surface of a pro moted MoS 2 catalyst: An ab initio local density functional study [J ] . Journal of Catalysis , 2000 , 190 ( 1 ): 128 - 143 .
PERDEW J P , BURKE K , ERNZERHOF M . Generalized gradient approximation made simple [J ] . Physical Review Letters , 1996 , 77 ( 18 ): 3865 - 3868 .
GRITSENKO O V , CORDERO N A , RUBIO A , et al . Gradient correction to the exchange pair-correlation function of the weighted spin-density approximation in the density functional formalism [J ] . Chemical Physics Letters , 1998 , 296 ( 3/4 ): 307 - 312 .
MOMMA K , IZUMI F . VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J ] . Journal of Applied Crystallography , 2011 , 44 ( 6 ): 1272 - 1276 .
DRONSKOWSKI R , BLÖCHL P E . Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations [J ] . The Journal of Physical Chemistry , 1993 , 97 ( 33 ): 8617 - 8624 .
SUN X , ZHANG R , WANG B . Insights into the preference of CH x ( x = 1~3) formation from CO hydrogenation on Cu(111) surface [J ] . Applied Surface Science , 2013 , 265 : 720 - 30 .
ZHENG H , ZHANG R , LI Z , et al . Insight into the mechanism and possibility of ethanol formation from syngas on Cu(100) surface [J ] . Journal of Molecular Catalysis A: Chemical , 2015 , 404 : 115 - 30 .
ZHANG R , SUN X , WANG B . Insight into the preference mechanism of CH x ( x = 1~3) and C—C chain formation involved in C 2 oxygenate formation from syngas on the Cu(110) surface [J ] . The Journal of Physical Chemistry C , 2013 , 117 ( 13 ): 6594 - 6606 .
ZHANG R G , WANG G R , WANG B G . Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based catalyst [J ] . Journal of Catalysis , 2013 , 305 : 238 - 55 .
BEHRENS M , STUDT F , KASATKIN I , et al . The active site of methanol synthesis over Cu/ZnO/Al 2 O 3 industrial catalysts [J ] . Science , 2012 , 336 ( 6083 ): 893 - 897 .
YANG M L , ZHU Y A , FAN C , et al . DFT study of propane dehydrogenation on Pt catalyst: Effects of step sites [J ] . Physical Chemistry Chemical Physics , 2011 , 13 ( 8 ): 3257 - 3267 .
CATAPAN R C , OLIVEIRA A A M , CHEN Y , et al . DFT study of the water-gas shift reaction and coke formation on Ni(111) and Ni(211) surfaces [J ] . The Journal of Physical Chemistry C , 2012 , 116 ( 38 ): 20281 - 20291 .
CALLE-VALLEJO F , LOFFREDA D , KOPER M T M , et al . Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers [J ] . Nature Chemistry , 2015 , 7 ( 5 ): 403 - 410 .
下转第 54 页)
孙炫成 . Cu催化剂上合成气合成乙醇的反应机理研究 [D ] . 太原 : 太原理工大学 , 2013 .
SUN X C . Study on the reaction mechanism of ethanol synthesis from syngas on Cu catalyst [D ] . Taiyuan : Taiyuan University of Technology , 2013 .
CHEN X Y , ZHANG W H , HUANG W X . CO hydrogenation on stepped Cu and CuZn alloy surfaces: Competition between methanol synthesis and methanation pathways [J ] . Chinese Chemical Letters , 2023 , 34 ( 7 ): 107809 .
LI J , CROISET E , RICARDEZ-SANDOVAL L . Methane dissociation on Ni(100), Ni(111), and Ni(553): A comparative density functional theory study [J ] . Journal of Molecular Catalysis A: Chemical , 2012 , 365 : 103 - 114 .
BESENBACHER F , CHORKENDORFF I , CLAUSEN B S , et al . Design of a surface alloy catalyst for steam reforming [J ] . Science , 1998 , 279 ( 5358 ): 1913 - 1915 .
FANG W , LIU W J , GUO X J , et al . Theoretical investigation of CO adsorption on clean and hydroxylated TiO 2 -B(100) surfaces [J ] . The Journal of Physical Chemistry C , 2011 , 115 ( 17 ): 8622 - 8629 .
MA L X , WANG B J , FAN M H , et al . A specific defect type of Cu active site to suppress water-gas-shift reaction in syngas conversion to methanol over Cu catalysts [J ] . Chemical Engineering Science , 2023 , 269 : 118496 .
SUNG S S , HOFFMANN R . How carbon monoxide bonds to metal surfaces [J ] . Journal of the American Chemical Society , 1985 , 107 ( 3 ): 578 - 584 .
王雨欣 , 刘冰 , 刘小浩 . H覆盖对费托合成催化剂CO活化影响的理论计算研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 10 - 17 .
WANG Y X , LIU B , LIU X H . Theoretical calculation study on effects of H coverage on CO activation in Fischer-Tropsch synthesis catalysts [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 10 - 17 .
FANG Y , SUN H , PENG W , et al . Effect of surface [Cu 4 O ] moieties on the activity of Cu-based catalysts [J ] . ACS Catalysis , 2022 , 12 ( 9 ): 5162 - 5173 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构