浏览全部资源
扫码关注微信
上海兖矿能源科技研发有限公司 煤液化气化及高效低碳利用全国重点实验室,上海 201203
盛海兵(1989—),博士,工程师,研究方向为C1化学,E-mail:shenghaibing1234@163.com。
孙启文(1958—),博士,研究员,研究方向为煤液化及新型煤化工,E-mail:yetech@ye-tech.com。
收稿日期:2024-05-15,
修回日期:2024-06-21,
纸质出版日期:2025-05-25
移动端阅览
盛海兵,孙燕,孙启文.Mn助剂对KFeCuZn催化剂结构及其CO2加氢制C2+醇催化性能的影响[J].低碳化学与化工,2025,50(05):32-39.
SHENG Haibing,SUN Yan,SUN Qiwen.Effects of Mn additive on structures of KFeCuZn catalysts and their catalytic performances for CO2 hydrogenation to C2+ alcohols[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):32-39.
盛海兵,孙燕,孙启文.Mn助剂对KFeCuZn催化剂结构及其CO2加氢制C2+醇催化性能的影响[J].低碳化学与化工,2025,50(05):32-39. DOI: 10.12434/j.issn.2097-2547.20240215.
SHENG Haibing,SUN Yan,SUN Qiwen.Effects of Mn additive on structures of KFeCuZn catalysts and their catalytic performances for CO2 hydrogenation to C2+ alcohols[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):32-39. DOI: 10.12434/j.issn.2097-2547.20240215.
CO
2
加氢制C
2+
醇(碳原子数大于等于2的醇)是CO
2
高值化利用及实现“碳达峰、碳中和”的重要途径之一,而催化剂的构建是实现CO
2
加氢制C
2+
醇反应具有高活性和稳定性的关键。为研究Mn助剂对KFeCuZn催化剂结构和CO
2
加氢制C
2+
醇催化性能(以下简称“催化性能”)的影响,采用共沉淀法制备了不同Mn添加量的KFeCuZnMn
x
催化剂,通过XRD、XPS、SEM、N
2
物理吸/脱附、H
2
-TPR和CO
2
-TPD对催化剂进行了表征,并在300 °C、3 MPa、
V
(CO
2
):
V
(H
2
):
V
(Ar) = 20:60:10以及反应空速1800 h
-1
下对KFeCuZnMn
x
催化剂的催化性能进行了测试。结果表明,Mn作为结构助剂,适量添加的Mn会与其他金属发生不同程度的金属间相互作用,从而影响催化剂比表面积和颗粒尺寸。Mn同时作为电子助剂,与Fe发生电子转移并形成Fe-Mn-O活性相,影响了催化剂还原性能,有效提高了其催化性能。KFeCuZnMn
1.8
催化剂具有较好的金属分散性和较大的比表面积,可以暴露更多的有效活性位,其CO
2
转化率达到40.1%,总醇选择性达到20.3%,C
2+
醇在总醇中的占比(质量分数)高达95.6%。因此,通过精确控制Mn添加量,可以有效调控催化剂结构,进而增大C
2+
醇选择性。
The catalytic hydrogenation of CO
2
to C
2+
alcohols (alcohols with two or more carbon atoms) is one of the important pathways for the high-value utilization of CO
2
and the achievement of “carbon peak and carbon neutrality”
and the construction of catalysts is the key to achieve high activity and stability in CO
2
hydrogenation to C
2+
alcohols. To investigate the effe
cts of Mn additive on structures of KFeCuZn catalysts and their catalytic performances for CO
2
hydrogenation to C
2+
alcohols (hereinafter referred to as “catalytic performances”)
KFeCuZnMn
x
catalysts with different Mn addition amounts were prepared by co precipitation method
and they were characterized by XRD
XPS
SEM
N
2
physical adsorption/desorption
H
2
-TPR and CO
2
-TPD. The catalytic performances of KFeCuZnMn
x
catalysts were tested under reaction conditions of 300 ℃
3 MPa
V
(CO
2
):
V
(H
2
):
V
(Ar) = 20:60:10
and space velocity of 1800 h
-1
. The results show that Mn acts as structural additive
and moderate addition of Mn can cause varying degrees of metal to metal interactions with other metals
so as to affect the specific surface areas and particle sizes of catalysts. At the same time
Mn
as electronic additive
undergoes electron transfer between Fe
and forms Fe-Mn-O active phase
which affects the reduction performances of catalysts and effectively improves their catalytic performances. KFeCuZnMn
1.8
catalyst has good metal dispersibility and a large specific surface area
which can expose more effective active sites. Its CO
2
conversion rate reaches 40.1%
and total alcohol selectivity reaches 20.3%
and the proportion of C
2+
alcohols in the total alcohols (mass fraction) is as high as 95.6%. Therefore
by precisely controlling the addition amount of Mn
the catalyst structures can be effective regulated
thereby increasing the C
2+
alcohol selectivity.
成康 , 张庆红 , 康金灿 , 等 . 二氧化碳直接制备高值化学品中的接力催化方法 [J ] . 中国科学: 化学 , 2020 , 50 ( 7 ): 743 - 755 .
CHENG K , ZHANG Q H , KANG J C , et al . Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals [J ] . SCIENTIA SINICA Chimica , 2020 , 50 ( 7 ): 743 - 755 .
GAO P , LI S G , BU X N , et al . Direct conversion of CO 2 into liquid fuels with high selectivity over a bifunctional catalyst [J ] . Nature Chemistry , 2017 , 9 ( 10 ): 1019 - 1024 .
LIU X L , WANG M H , ZHOU C , et al . Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa 2 O 4 and SAPO-34 [J ] . Chemical Communications , 2018 , 54 ( 2 ): 140 - 143 .
WEI J , YAO R W , GE Q J , et al . Catalytic hydrogenation of CO 2 to isoparaffins over Fe-based multifunctional catalysts [J ] . ACS Catalysis , 2018 , 8 ( 11 ): 9958 - 9967 .
WANG Y , WANG K Z , ZHANG B Z , et al . Direct conversion of CO 2 to ethanol boosted by intimacy-sensitive multifunctional catalysts [J ] . ACS Catalysis , 2021 , 11 ( 18 ): 11742 - 11753 .
POUR A N , SHAHRI S M K , ZAMANI Y , et al . Deactivation studies of bifunctional Fe-HZSM5 catalyst in Fischer-Tropsch process [J ] . Journal of Natural Gas Chemistry , 2008 , 17 ( 3 ): 242 - 248 .
POUR A N , HOUSAINDOKHT M R . Study of activity, products selectivity and physico-chemical properties of bifunctional Fe/HZSM-5 Fischer-Tropsch catalyst: Effect of catalyst shaping [J ] . Journal of Natural Gas Science and Engineering , 2013 , 14 : 29 - 33 .
KARRE A V , KABABJI A , KUGLER E L , et al . Effect of addition of zeolite to iron-based activated-carbon-supported catalyst for Fischer-Tropsch synthesis in separate beds and mixed beds [J ] . Catalysis Today , 2012 , 198 ( 1 ): 280 - 288 .
KARRE A V , KABABJI A , KUGLER E L , et al . Effect of time on stream and temperature on upgraded products from Fischer-Tropsch synthesis when zeolite is added to iron-based activated-carbon-supported catalyst [J ] . Catalysis Today , 2013 , 214 : 82 - 89 .
WANG D , BI Q Y , YIN G H , et al . Direct synthesis of ethanol via CO 2 hydrogenation using supported gold catalysts [J ] . Chemical communications 2016 , 52 ( 99 ): 14226 - 14229 .
EGBEBI A , SCHWARTZ V , OVERBURY S H , et al . Effect of Li promoter on titania-supported Rh catalyst for ethanol formation from CO hydrogenation [J ] . Catalysis Today , 2010 , 149 ( 1/2 ): 91 - 97 .
OJEDA M , GRANADOS M L , ROJAS S , et al . Manganese-promoted Rh/Al 2 O 3 for C 2 -oxygenates synthesis from syngas: Effect of manganese loading [J ] . Applied Catalysis A: General , 2004 , 261 ( 1 ): 47 - 55 .
ZHANG F Y , ZHOU W , XIONG X W , et al . Selective hydrogenation of CO 2 to ethanol over sodium-modified rhodium nanoparticles embedded in zeolite silicalite-1 [J ] . Journal of Physical Chemistry C , 2021 , 125 ( 44 ): 24429 - 24439 .
LIU B , OUYANG B , ZHANG Y H , et al . Effects of mesoporous structure and Pt promoter on the activity of Co-based catalysts in low-temperature CO 2 hydrogenation for higher alcohol synthesis [J ] . Journal of Catalysis , 2018 , 366 : 91 - 97 .
WANG P , CHEN S Y , BAI Y X , et al . Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation [J ] . Fuel , 2017 , 195 : 69 - 81 .
LI S G , GUO H J , LUO C R , et al . Effect of iron promoter on structure and performance of K/Cu-Zn catalyst for higher alcohols synthesis from CO 2 hydrogenation [J ] . Catalysis Letter , 2013 , 143 ( 4 ): 345 - 355 .
XU D , YANG H Q , HONG X L , et al . Tandem catalysis of direct CO 2 hydrogenation to higher alcohols [J ] . ACS Catalysis , 2021 , 11 ( 15 ): 8978 - 8984 .
XU D , WANG Y Q , DING M Y , et al . Advances in higher alcohol synthesis from CO 2 hydrogenation [J ] . Chemical Reviews , 2021 , 7 ( 4 ): 849 - 881 .
GNANAMANI M K , JACOBS G , HAMDEH H H , et al . Hydrogenation of carbon dioxide over Co-Fe bimetallic catalysts [J ] . ACS Catalysis , 2016 , 6 ( 2 ): 913 - 927 .
LI S G , GUO H J , LUO C R , et al . Effect of iron promoter on structure and performance of K/Cu-Zn catalyst for higher alcohols synthesis from CO 2 hydrogenation [J ] . Catalysis Letter , 2013 , 143 ( 4 ): 345 - 355 .
GUO H J , LI S G , PENG F , et al . Roles investigation of promoters in K/Cu-Zn catalyst and higher alcohols synthesis from CO 2 hydrogenation over a novel two-stage bed catalyst combination system [J ] . Catalysis Letter , 2014 , 145 ( 2 ): 620 - 630 .
TAKAGAWA M , OKAMOTO A , FUJIMURA H , et al . Ethanol synthesis from carbon dioxide and hydrogen [J ] . Studies in Surface Science and Catalysis , 1998 , 114 : 525 - 528 .
GUO W , GAO W G , WANG H , et al . Higher alcohols synthesis from CO 2 hydrogenation over K 2 O-modified CuZnFeZrO 2 catalysts [J ] . Advanced Materials Research , 2013 , 827 : 20 - 24 .
LI S G , GUO H J , ZHANG H R , et al . The reverse water-gas shift reaction and the synthesis of mixed alcohols over K/Cu-Zn catalyst from CO 2 hydrogenation [J ] . Advanced Materials Research , 2013 , 772 : 275 - 280 .
LU Y W , YU F , HU J , et al . Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst [J ] . Applied Catalysis A: General , 2012 , 429 : 48 - 58 .
LIU Y , CHEN J F , BAO J , et al . Manganese-modified Fe 3 O 4 microsphere catalyst with effective active phase of forming light olefins from syngas [J ] . ACS Catalysis , 2015 , 5 ( 6 ): 3905 - 3909 .
QIAN W X , WANG H , XU Y B , et al . In situ DRIFTS study of homologous reaction of methanol and higher alcohols synthesis over Mn promoted Cu-Fe catalysts [J ] . Industrial & Engineering Chemistry Research , 2019 , 58 ( 16 ): 6288 - 6297 .
PATERSON J , PEACOCK M , PURVES R , et al . Manipulation of Fischer-Tropsch synthesis for production of higher alcohols using manganese promoters [J ] . ChemCatChem , 2018 , 10 ( 22 ): 5154 - 5163 .
WERNER S , JOHNSON G R , BELL A T . Synthesis and characterization of supported cobalt-manganese nanoparticles as model catalysts for Fischer-Tropsch synthesis [J ] . ChemCatChem , 2014 , 6 ( 10 ): 2881 - 2888 .
LIN M G , FANG K G , LI D B , et al . CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts [J ] . Catalysis Communication , 2008 , 9 ( 9 ): 1869 - 1873 .
XU Y , ZHAI P , DENG Y C , et al . Highly selective olefin production from CO 2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives [J ] . Angewandte Chemie International Edition , 2020 , 59 ( 48 ): 21736 - 21744 .
AL-DOSSARY M , ISMAIL A A , FIERRO J L G , et al . Effect of Mn loading onto MnFeO nanocomposites for the CO 2 hydrogenation reaction [J ] . Applied Catalysis B: Environmental , 2015 , 165 : 651 - 660 .
YANG Z X , ZHANG Z P , LIU Y T , et al . Tuning direct CO hydrogenation reaction over Fe-Mn bimetallic catalysts toward light oleffns: Effects of Mn promotion [J ] . Applied Catalysis B: Environmental , 2021 , 285 : 119815 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构