浏览全部资源
扫码关注微信
1.西南石油大学 油气藏地质及开发工程国家重点实验室,四川 成都 610500
2.西南石油大学 新能源与材料学院,四川 成都 610500
3.四川金象赛瑞化工股份有限公司,四川 眉山 620031
王芳(1985—),博士,副教授,研究方向为碳捕集和水合物利用技术,E-mail:wangfnjust@163.com。
周莹(1981—),博士,教授,研究方向为油气资源与绿色能源,E-mail:yzhou@swpu.edu.cn。
收稿日期:2024-05-08,
修回日期:2024-06-07,
纸质出版日期:2025-02-25
移动端阅览
王芳,安晓圣,穆金池等.低压下碳纳米管用于水合物法捕集烟道气中CO2动力学机制研究[J].低碳化学与化工,2025,50(02):148-156.
WANG Fang,AN Xiaosheng,MU Jinchi,et al.Study on kinetic mechanism of carbon nanotubes for CO2 capture from flue gas by hydrate method under low pressures[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):148-156.
王芳,安晓圣,穆金池等.低压下碳纳米管用于水合物法捕集烟道气中CO2动力学机制研究[J].低碳化学与化工,2025,50(02):148-156. DOI: 10.12434/j.issn.2097-2547.20240200.
WANG Fang,AN Xiaosheng,MU Jinchi,et al.Study on kinetic mechanism of carbon nanotubes for CO2 capture from flue gas by hydrate method under low pressures[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):148-156. DOI: 10.12434/j.issn.2097-2547.20240200.
水合物法作为低能耗CO
2
捕集技术,具有良好的应用前景。然而水合物法捕集CO
2
目前还存在CO
2
水合物生长速率较慢和CO
2
捕集效率较低等问题。通过结合第一性原理、蒙特卡洛模拟和动力学实验,研究了较低初始压力(0.50~4.50 MPa)下,碳纳米管用于水合物法捕集烟道气中CO
2
的动力学机制和捕集性能。结果表明,对于气体组成(体积分数计)为20% CO
2
+ 80% N
2
的烟道气,在0.10~0.50 MPa下,双壁碳纳米管可通过分子间范德华力优先吸附CO
2
,且CO
2
吸附量和CO
2
选择率均在0.80 MPa附近达到峰值。综合考虑,由质量分数为0.01%的多壁碳纳米管和物质的量分数为4%的四氢呋喃组成的复合促进剂体系在2.50 MPa下表现出较好的捕集性能,其CO
2
储气量为(3.54 ± 0.28) mmol/mol,诱导时间为(24.33 ± 1.53) min,CO
2
捕集效率为76.75% ± 5.49%。
As a low energy consumption CO
2
capture technology
hydrate method has a good application prospect. However
there are still some problems such as slow CO
2
hydrates growth rate and low CO
2
capture efficiency in CO
2
capture by hydrate method. By combining first principles
Monte Carlo simulation and kinetic experiments
the kinetic mechanism and capture performance of carbon nanotubes for CO
2
capture from flue gas by hydrate method were studied under low initial pressure (from 0.50 MPa to 4.50 MPa). The results show that for the flue gas with the gas compositions (volume fraction) of 20% CO
2
and 80% N
2
double-walled carbon nanotubes have preferential adsorption of CO
2
through the inter
molecular van der Waals force under 0.10 MPa to 0.50 MPa. The CO
2
adsorption capacity and CO
2
selection rate both reach peak values near 0.80 MPa. Under comprehensive consideration
the compound accelerator system (multi-walled nanotubes mass fraction of 0.01% and tetrahydrofuran mole fraction of 4%) show relative good capture performance under 2.50 MPa
with the gas storage capacity of (3.54 ± 0.28) mmol/mol
the induction time of (24.33 ± 1.53) min and the CO
2
capture efficiency of 76.75% ± 5.49%.
张九天 , 张璐 . 面向碳中和目标的碳捕集、利用与封存发展初步探讨 [J ] . 热力发电 , 2021 , 50 ( 1 ): 1 - 6 .
ZHANG J T , ZHANG L . Preliminary discussion on development of carbon capture, utilization and storage for carbon neutralization [J ] . Thermal Power Generation , 2021 , 50 ( 1 ): 1 - 6 .
胡登 , 王星博 , 陈新庆 , 等 . 二氧化碳捕集-转化一体化技术研究进展 [J ] . 科学通报 , 2024 , 69 ( 8 ): 1012 - 1024 .
HU D , WANG X B , CHEN X Q , et al . Research status and prospects on integrated carbon capture and conversion [J ] . Chinese Science Bulletin , 2024 , 69 ( 8 ): 1012 - 1024 .
JIANG Y M , ZHANG F Y , MA M Z , et al . Titanium oxide mediated rapid charge separation in halide perovskite for efficient photocatalytic CO 2 reduction [J ] . Chemical Physics Letters , 2023 , 811 : 140255 .
DAVOODI S , AL-SHARGABI M , WOOD D A , et al . Review of technological progress in carbon dioxide capture, storage, and utilization [J ] . Gas Science and Engineering , 2023 , 117 : 205070 .
沈海燕 , 李芳芹 , 任建兴 , 等 . 化学吸收法捕集二氧化碳的研究进展 [J ] . 无机盐工业 , 2024 , 56 ( 5 ): 11 - 19 .
SHEN H Y , LI F Q , REN J X , et al . Research progress of carbon dioxide capture by chemical absorption [J ] . Inorganic Chemicals Industry , 2024 , 56 ( 5 ): 11 - 19 .
龚奂彰 , 黄秀玉 . 钢铁行业碳捕集技术的典型应用 [J ] . 低碳化学与化工 , 2023 , 48 ( 5 ): 103 - 108 .
GONG H Z , HUANG X Y . Typical application of carbon capture technology in steel industry [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 5 ): 103 - 108 .
刘晴晴 , 叶佳璐 . 浅析二氧化碳捕集储存技术研究进展 [J ] . 当代化工研究 , 2021 , ( 18 ): 160 - 161 .
LIU Q Q , YE J L . Analysis on the research progress of carbon dioxide capture and storage technology [J ] . Modern Chemical Research , 2021 , ( 18 ): 160 - 161 .
徐纯刚 , 李小森 , 陈朝阳 . 水合物法分离二氧化碳的研究现状 [J ] . 化工进展 , 2011 , 30 ( 4 ): 701 - 708 .
XU C G , LI X S , CHEN Z Y . Research on hydrate-based carbon dioxide separation [J ] . Chemical Industry and Engineering Progress , 2011 , 30 ( 4 ): 701 - 708 .
王芳 , 穆金池 , 张政 , 等 . 温和条件下甲烷提高水合物储氢稳定特性机理 [J ] . 天然气工业 , 2024 , 44 ( 2 ): 188 - 196 .
WANG F , MU J C , ZHANG Z , et al . Mechanism of methane in improving the stability of hydrate hydrogen storage under mild conditions [J ] . Natural Gas Industry , 2024 , 44 ( 2 ): 188 - 196 .
XU C G , YU Y S , XIE W J , et al . Study on developing a novel continuous separation device and carbon dioxide separation by process of hydrate combined with chemical absorption [J ] . Applied Energy , 2019 , 255 : 113791 .
樊栓狮 , 尤莎莉 , 郎雪梅 , 等 . 笼型水合物膜分离和捕获二氧化碳研究进展 [J ] . 化工进展 , 2020 , 39 ( 4 ): 1211 - 1218 .
FAN S S , YOU S L , LANG X M , et al . Separation and capture carbon dioxide by clathrate-hydrate membranes: A review [J ] . Chemical Industry and Engineering Progress , 2020 , 39 ( 4 ): 1211 - 1218 .
樊栓狮 , 刘发平 , 郎雪梅 , 等 . CO 2 捕集与置换开采天然气水合物中甲烷的研究进展 [J ] . 天然气化工—C1化学与化工 , 2022 , 47 ( 4 ): 1 - 10 .
FAN S S , LIU F P , LANG X M , et al . Research progress of CO 2 capture and replacement of methane from natural gas hydrates [J ] . Natural Gas Chemical Industry , 2022 , 47 ( 4 ): 1 - 10 .
NGUYEN N N , LA V T , HUYNH C D , et al . Technical and economic perspectives of hydrate-based carbon dioxide capture [J ] . Applied Energy , 2022 , 307 : 118237 .
DASHTI H , LOU X . Gas hydrate-based CO 2 separation quantitative assessment of the effectiveness of various chemical additives involved in the process [C ] // Springer . Energy Technology 2018 . Berlin : Springer , 2018: 3 - 16 .
LINGA P , ADEYEMO A , ENGLEZOS P . Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide [J ] . Environmental Science & Technology , 2008 , 42 ( 1 ): 315 - 320 .
LINGA P , KUMAR R , LEE J D , et al . A new apparatus to enhance the rate of gas hydrate formation: Application to capture of carbon dioxide [J ] . International Journal of Greenhouse Gas Control , 2009 , 4 ( 4 ): 630 - 637 .
FAN S S , LI S F , WANG J Q , et al . Efficient capture of CO 2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates [J ] . Energy Fuels , 2009 , 23 ( 8 ): 4202 - 4208 .
LI X S , XU C G , CHEN Z Y , et al . Tetra- n -butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride [J ] . Energy , 2010 , 35 : 3902 - 3908 .
LIU F P , LI A R , QING S L , et al . Formation kinetics, mechanism of CO 2 hydrate and its applications [J ] . Renewable and Sustainable Energy Reviews , 2022 , 159 : 112221 .
CHOI J W , CHUNG J T , KANG Y T . CO 2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants [J ] . Energy , 2014 , 78 : 869 - 876 .
左江伟 , 岳铭亮 , 吕晓方 , 等 . 高压流动体系CO 2 水合物生长动力学特性 [J ] . 科学技术与工程 , 2019 , 19 ( 20 ): 187 - 195 .
ZUO J W , YUE M L , LV X F , et al . Growth kinetics of CO 2 hydrate in high pressure flow system [J ] . Science Technology and Engineering , 2019 , 19 ( 20 ): 187 - 195 .
CHENG Z C , LI S H , LIU Y , et al . Post-combustion CO 2 capture and separation in flue gas based on hydrate technology: A review [J ] . Renewable and Sustainable Energy Reviews , 2022 , 154 : 111806 .
BAI Y , LU H Z , MA F Z , et al . Carbon nanotube-based nanopromoters for gas hydrate formation [J ] . Journal of Natural Gas Science and Engineering , 2021 , 94 : 104109 .
陈佳豪 , 王芳 , 黄泽皑 , 等 . 碳纳米管用于水合物法捕集CO 2 的研究进展 [J ] . 天然气化工—C1化学与化工 , 2022 , 47 ( 4 ): 11 - 18 .
CHEN J H , WANG F , HUANG Z A , et al . Research progress of carbon nanotubes for CO 2 capture by hydrate method [J ] . Natural Gas Chemical Industry , 2022 , 47 ( 4 ): 11 - 18 .
LI D L , PENG H , LIANG D Q . Thermal conductivity enhancement of clathrate hydrate with nanoparticles [J ] . International Journal of Heat and Mass Transfer , 2017 , 104 : 566 - 573 .
ZHAO W H , BAI J , FRANCISCO J S , et al . Formation of CO 2 hydrates within single-walled carbon nanotubes at ambient pressure: CO 2 capture and selective separation of a CO 2 /H 2 mixture in water [J ] . The Journal of Physical Chemistry C , 2018 , 122 ( 14 ): 7951 - 7958 .
LI A R , LUO D , JIANG L L , et al . Experimental study on CO 2 hydrate formation in the presence of TiO 2 , SiO 2 , MWNTs nanoparticles [J ] . Separation Science and Technology , 2019 , 54 ( 15 ): 2498 - 2506 .
盛淑美 , 章冶 , 李栋梁 , 等 . 多壁碳纳米管对CH 4 -CO 2 -TBAB水合物的促进作用 [J ] . 天然气化工—C1化学与化工 , 2019 , 44 ( 1 ): 51 - 56 .
SHENG S M , ZHANG Y , LI D L , et al . Promotion effect of multi-walled carbon nanotubes on CH 4 -CO 2 -TBAB hydrates formation [J ] . Natural Gas Chemical Industry , 2019 , 44 ( 1 ): 51 - 56 .
张保勇 , 宁正琪 , 张强 , 等 . 多壁碳纳米管对CH 4 /CO 2 混合气水合分离影响的实验研究 [J ] . 黑龙江科技大学学报 , 2021 , 31 ( 4 ): 436 - 441 .
ZHANG B Y , NING Z Q , ZHANG Q , et al . Experimental study on effect of multi-walled carbon nanotubes for CH 4 /CO 2 mixture hydrate separation [J ] . Journal of Heilongjiang University of Science & Technology , 2021 , 31 ( 4 ): 436 - 441 .
林志忠 , 刘浪 , 刘朝 . 碳纳米管吸附分离CO 2 /N 2 混合物的分子模拟研究 [J ] . 工程热物理学报 , 2021 , 42 ( 6 ): 1369 - 1377 .
LIN Z Z , LIU L , LIU C . Selective Adsorption of CO 2 /N 2 mixtures in carbon nanotubes: A molecular simulation study [J ] . Journal of Engineering Thermophysics , 2021 , 42 ( 6 ): 1369 - 1377 .
KRESSE G G , FURTHMULLER J J . Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set [J ] . Physical Review B , 1996 , 54 : 11169 - 11186 .
KRESSE G , JOUBERT D . From ultrasoft pseudopotentials to the projector augmented-wave method [J ] . Physical Review B , 1999 , 59 : 1758 - 1775 .
WANG F , MU J C , LIN W J , et al . Post-combustion CO 2 capture via the hydrate formation at the gas-liquid-solid interface induced by the non-surfactant graphene oxide [J ] . Energy , 2024 , 290 : 130177 .
WANG X L , ZHANG F Y , Lipiński W . Research progress and challenges in hydrate-based carbon dioxide capture applications [J ] . Applied Energy , 2020 , 269 : 114928 .
TANG J F , ZENG D L , WANG C L , et al . Study on the influence of SDS and THF on hydrate-based gas separation performance [J ] . Chemical Engineering Research and Design , 2013 , 91 ( 9 ): 1777 - 1782 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构