浏览全部资源
扫码关注微信
1.中国石油大学(华东) 新能源学院,化学化工学院,山东 青岛 266580
2.贝欧亿(山东)新材料有限公司,山东 滨州 256500
李华勇(2000—),硕士研究生,研究方向为CO2加氢催化剂设计,E-mail:z22030015@s.upc.edu.cn。
王阳(1991—),博士,副教授,研究方向为碳基催化材料及碳一小分子转化,E-mail:wangyang@upc.edu.cn;
吴明铂(1972—),博士,教授,研究方向为新型碳材料开发及应用,E-mail:wumb@upc.edu.cn。
收稿日期:2024-05-06,
修回日期:2024-06-04,
纸质出版日期:2025-02-25
移动端阅览
李华勇,邢小芳,林世源等.热催化CO2加氢制烯烃催化剂研究进展[J].低碳化学与化工,2025,50(02):1-14.
LI Huayong,XING Xiaofang,LIN Shiyuan,et al.Research progress on catalysts for thermal catalytic CO2 hydrogenation to olefins[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):1-14.
李华勇,邢小芳,林世源等.热催化CO2加氢制烯烃催化剂研究进展[J].低碳化学与化工,2025,50(02):1-14. DOI: 10.12434/j.issn.2097-2547.20240197.
LI Huayong,XING Xiaofang,LIN Shiyuan,et al.Research progress on catalysts for thermal catalytic CO2 hydrogenation to olefins[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):1-14. DOI: 10.12434/j.issn.2097-2547.20240197.
化石燃料大量消耗造成的碳排放导致大气中CO
2
浓度剧增,引起了一系列严峻的环境问题。捕集CO
2
并将其转化为高值化学品是重要的减碳途径之一。热催化CO
2
加氢制烯烃因其优异的CO
2
转化效率和产物产率而备受关注。改进费托路径和甲醇中间体路径是目前的主流工艺,前者主要基于Fe基催化剂,后者主要基于金属氧化物/分子筛复合催化剂。首先总结了近年来热催化CO
2
加氢制烯烃催化剂的研究进展,包括不同反应路径的反应机理、催化剂物化性质的调控策略
,以及影响烯烃合成性能的关键因素。其次对CO
2
加氢制烯烃工艺的应用前景进行了展望,以期为该领域的研究提供参考。
Carbon emissions from the excessive consumption of fossil fuels have led to a significant increase in atmospheric CO
2
concentrations
causing a series of severe environmental issues. Capturing and converting CO
2
into high-value chemicals is one of the key pathways for carbon reduction. Thermal catalytic CO
2
hydrogenation to olefins has attracted considerable attention due to its excellent CO
2
conversion efficiency and product yield. The modified Fischer-Tropsch route and the methanol intermediate route are the mainstream processes currently
with the former primarily based on Fe-based catalysts and the latter on metal oxide/molecular sieve composite catalysts. First
the recent research progress on catalysts for thermal catalytic CO
2
hydrogenation to olefins was summarized
including the reaction mechanisms of different routes
the strategies for regulating the physicochemical properties of catalysts and the key factors affecting olefin synthesis performance. Furthermore
the application prospects of CO
2
hydrogenation to olefins processes were discussed to provide a reference for research in the field.
JEFFRY L , ONG M Y , NOMANBHAY S , et al . Greenhouse gases utilization: A review [J ] . Fuel , 2021 , 301 : 121017 .
GAMBELLI A M . CCUS strategies as most viable option for global warming mitigation [J ] . Energies , 2023 , 16 ( 10 ): 4077 .
CHEN Y , WANG D K , DENG X Y , et al . Metal-organic frameworks (MOFs) for photocatalytic CO 2 reduction [J ] . Catalysis Science & Technology , 2017 , 7 ( 21 ): 4893 - 4904 .
ZHANG S , FAN Q , XIA R , et al . CO 2 reduction: From homogeneous to heterogeneous electrocatalysis [J ] . Accounts of Chemical Research , 2020 , 53 ( 1 ): 255 - 264 .
CHEN J Y , HAN S J , PARK H G , et al . Benchmarking promoters of Fe/activated carbon catalyst for stable hydrogenation of CO 2 to liquid hydrocarbons [J ] . Applied Catalysis B: Environmental , 2023 , 325 : 122370 .
HIRAGOND C B , POWAR N S , LEE J , et al . Single‐atom catalysts (SACs) for photocatalytic CO 2 reduction with H 2 O: Activity, product selectivity, stability, and surface chemistry [J ] . Small , 2022 , 18 ( 29 ): 2201428 .
GONG Q F , DING P , XU M Q , et al . Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction [J ] . Nature Communications , 2019 , 10 ( 1 ): 2807 .
MAO Y Z , ZHA F , TIAN H F , et al . Progress in the thermo-catalytic hydrogenation of CO 2 to ethanol [J ] . Journal of Fuel Chemistry and Technology , 2023 , 51 ( 10 ): 1514 - 1528 .
ZHOU Z X , GAO P . Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J ] . Chinese Journal of Catalysis , 2022 , 43 ( 8 ): 2045 - 2056 .
ZHANG Z L , HUANG Y X , MA H F , et al . Syngas-to-olefins over MOF-derived ZnZrO x and SAPO-34 bifunctional catalysts [J ] . Catalysis Communications , 2021 , 152 : 106292 .
CRUCHADE H , VEIT C , COLIN J J , et al . Cleaner technology for the production of linear long chain α -olefins through a “millisecond” oxidative cracking process [J ] . Applied Catalysis A: General , 2021 , 610 : 117944 .
NAN Y Y , MAO Y Z , ZHA F , et al . ZrO 2 -ZnO-CeO 2 integrated with nano-sized SAPO-34 zeolite for CO 2 hydrogenation to light olefins [J ] . Reaction Kinetics, Mechanisms and Catalysis , 2022 , 135 ( 6 ): 2959 - 2972 .
ZHAO R , MENG X , DAI W H , et al . Highly dispersed Fe/EG catalysts assisted by ammonium citrate and their application in CO 2 hydrogenation to olefins [J ] . Fuel , 2023 , 351 : 128926 .
张超 , 张玉龙 , 朱明辉 , 等 . CO 2 高值化利用新途径: 铁基催化剂CO 2 加氢制烯烃研究进展 [J ] . 化工进展 , 2021 , 40 ( 2 ): 577 - 593 .
ZHANG C , ZHANG Y L , ZHU M H , et al . New pathway for CO 2 high-valued utilization:Fe-based catalysts for CO 2 hydrogenation to low olefins [J ] . Chemical Industry and Engineering Progress , 2021 , 40 ( 2 ): 577 - 593 .
ZHANG W Y , WANG S , GUO S J , et al . Effective conversion of CO 2 into light olefins over a bifunctional catalyst consisting of La-modified ZnZrO x oxide and acidic zeolite [J ] . Catalysis Science & Technology , 2022 , 12 ( 8 ): 2566 - 2577 .
卢思宇 , 杨海艳 , 杨承广 , 等 . In 2 O 3 /SSZ-13催化CO 2 加氢高选择性合成液化石油气 [J ] . 燃料化学学报 , 2021 , 49 ( 8 ): 1132 - 1139 .
LU S Y , YANG H Y , YANG C G , et al . Highly selective synthesis of LPG from CO 2 hydrogenation over In 2 O 3 /SSZ-13 binfunctional catalyst [J ] . Journal of Fuel Chemistry and Technology , 2021 , 49 ( 8 ): 1132 - 1139 .
WEBER D , HE T , WONG M , et al . Recent advances in the mitigation of the catalyst deactivation of CO 2 hydrogenation to light olefins [J ] . Catalysts , 2021 , 11 ( 12 ): 1447 .
WANG D , XIE Z H , POROSOFF M D , et al . Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics [J ] . Chem , 2021 , 7 ( 9 ): 2277 - 2311 .
ZHOU W , CHENG K , KANG J C , et al . New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO 2 into hydrocarbon chemicals and fuels [J ] . Chemical Society Reviews , 2019 , 48 ( 12 ): 3193 - 3228 .
HE R S , WANG Y , LI M , et al . Tailoring the CO 2 hydrogenation performance of Fe‐based catalyst via unique confinement effect of the carbon shell [J ] . Chemistry—A European Journal , 2023 , 29 ( 65 ): e202301918 .
SINGH G , PANDA S , GAHTORI J , et al . Comparative study of short-chain olefins synthesis via CO 2 hydrogenation over iron-containing double metal cyanide-derived catalysts [J ] . ACS Sustainable Chemistry & Engineering , 2023 , 11 ( 30 ): 11181 - 11198 .
CHEN H P , WANG C W , ZHENG M Y , et al . Reactive ball-milling synthesis of Co-Fe bimetallic catalyst for efficient hydrogenation of carbon dioxide to value-added hydrocarbons [J ] . Journal of Energy Chemistry , 2023 , 84 : 210 - 218 .
YUAN F , ZHANG G H , WANG M R , et al . Boosting the production of light olefins from CO 2 hydrogenation over Fe-Co bimetallic catalysts derived from layered double hydroxide [J ] . Industrial & Engineering Chemistry Research , 2023 , 62 ( 21 ): 8210 - 8221 .
CHEN B Y , DOBELE G , PLAVNIECE A , et al . Catalytic hydrogenation of CO 2 to light olefins by using K-doped FeC x catalysts derived from the Fe-chitosan complex [J ] . International Journal of Hydrogen Energy , 2023 , 48 ( 11 ): 4276 - 4286 .
JIN K , WEN C Y , CHEN L G , et al . In situ synthesis of highly dispersed Fe/C catalysts with pomelo peel as carbon source in CO 2 hydrogenation to light olefins [J ] . Fuel , 2023 , 333 : 126412 .
YANG H Y , DANG Y R , CUI X , et al . Selective synthesis of olefins via CO 2 hydrogenation over transition-metal-doped iron-based catalysts [J ] . Applied Catalysis B: Environmental , 2023 , 321 : 122050 .
LIU Y Y , CHEN B J , LIU R , et al . CO 2 hydrogenation to olefins on supported iron catalysts: Effects of support properties on carbon-containing species and product distribution [J ] . Fuel , 2022 , 324 : 124649 .
WANG Y , LIN S , LI M , et al . Boosting CO 2 hydrogenation of Fe-based monolithic catalysts via 3D printing technology-induced heat/mass-transfer enhancements [J ] . Applied Catalysis B: Environmental , 2024 , 340 : 123211 .
NI Z J , CAI M X , ZHONG S Y , et al . Sodium promoted FeZn@SiO 2 -C catalysts for sustainable production of low olefins by CO 2 hydrogenation [J ] . Catalysts , 2023 , 13 ( 12 ): 1508 .
XU Q Q , XU X Q , FAN G L , et al . Unveiling the roles of Fe-Co interactions over ternary spinel-type ZnCo x Fe 2- x O 4 catalysts for highly efficient CO 2 hydrogenation to produce light olefins [J ] . Journal of Catalysis , 2021 , 400 : 355 - 366 .
WITOON T , NUMPILAI T , NUEANGNORAJ K , et al . Light olefins synthesis from CO 2 hydrogenation over mixed Fe-Co-K supported on micro-mesoporous carbon catalysts [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 100 ): 42185 - 42199 .
YUAN F , ZHANG G H , ZHU J , et al . Boosting light olefin selectivity in CO 2 hydrogenation by adding Co to Fe catalysts within close proximity [J ] . Catalysis Today , 2021 , 371 : 142 - 149 .
SUN Z T , CHEN X , LU F X , et al . Effect of Rb promoter on Fe 3 O 4 microsphere catalyst for CO 2 hydrogenation to light olefins [J ] . Catalysis Communications , 2022 , 162 : 106387 .
ZHANG Z Q , YIN H R , YU G D , et al . Selective hydrogenation of CO 2 and CO into olefins over sodium- and zinc-promoted iron carbide catalysts [J ] . Journal of Catalysis , 2021 , 395 : 350 - 361 .
XU F , MENG X , ZHAO R , et al . Metal-organic framework-derived Fe 3 O 4 -FeC x catalyst for direct CO 2 hydrogenation to light olefins [J ] . Applied Catalysis A: General , 2024 , 670 : 119537 .
ZHANG P , HAN F , YAN J Y , et al . N-doped ordered mesoporous carbon (N-OMC) confined Fe 3 O 4 -FeC x heterojunction for efficient conversion of CO 2 to light olefins [J ] . Applied Catalysis B: Environmental , 2021 , 299 : 120639 .
ZHANG P Z , HAN F , YAN J Y , et al . Heteroatom induced synthesis of FeO-Fe 3 C confined within F-doped graphene shell for efficient CO 2 hydrogenation to light olefins [J ] . Chemical Engineering Journal , 2023 , 477 : 147153 .
ZHOU Y , TRAROE A S , PERON D V , et al . Promotion effects of alkali metals on iron molybdate catalysts for CO 2 catalytic hydrogenation [J ] . Journal of Energy Chemistry , 2023 , 85 : 291 - 300 .
ZHU J , MU M C , LIU Y , et al . Unveiling the promoting effect of potassium on the structural evolution of iron catalysts during CO 2 hydrogenation [J ] . Chemical Engineering Science , 2023 , 282 : 119228 .
NUMPILAI T , CHANLEK N , POO-ARPORN Y , et al . Tuning Interactions of surface‐adsorbed species over Fe-Co/K-Al 2 O 3 catalyst by different k contents: Selective CO 2 hydrogenation to light olefins [J ] . ChemCatChem , 2020 , 12 ( 12 ): 3306 - 3320 .
ZEPEDA T A , AGUIRRE S , GALINDO-ORTEGA Y I , et al . Hydrogenation of CO 2 to valuable C 2 -C 5 hydrocarbons on Mn-promoted high-surface-area iron catalysts [J ] . Catalysts , 2023 , 13 ( 6 ): 954 .
ZHANG Z Z , WEI C Y , JIA L Y , et al . Insights into the regulation of FeNa catalysts modified by Mn promoter and their tuning effect on the hydrogenation of CO 2 to light olefins [J ] . Journal of Catalysis , 2020 , 390 : 12 - 22 .
XU Y , ZHAI P , DENG Y C , et al . Highly selective olefin production from CO 2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium ad ditives [J ] . Angewandte Chemie International Edition , 2020 , 59 ( 48 ): 21736 - 21744 .
XU M J , LIU X L , CAO C X , et al . Ternary Fe-Zn-Al spinel catalyst for co 2 hydrogenation to linear α -olefins: Synergy effects between Al and Zn [J ] . ACS Sustainable Chemistry & Engineering , 2021 , 9 ( 41 ): 13818 - 13830 .
WITOON T , CHAIPRADIGUL N , NUMPILAI T , et al . Highly active Fe-Co-Zn/K-Al 2 O 3 catalysts for CO 2 hydrogenation to light olefins [J ] . Chemical Engineering Science , 2021 , 233 : 116428 .
LI W H , ZHANG G H , JIANG X , et al . CO 2 hydrogenation on unpromoted and M-promoted Co/TiO 2 catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal-support interaction on tuning product distribution [J ] . ACS Catalysis , 2019 , 9 ( 4 ): 2739 - 2751 .
WANG C , ZHANG J L , GAO X H , et al . CO 2 hydrogenation to linear α -olefins on FeC x /ZnO catalysts: Effects of surface oxygen vacancies [J ] . Applied Surface Science , 2023 , 641 : 158543 .
HWANG S M , ZHANG C D , HAN S J , et al . Mesoporous carbon as an effective support for Fe catalyst for CO 2 hydrogenation to liquid hydrocarbons [J ] . Journal of CO 2 Utilization , 2020 , 37 : 65 - 73 .
YANG G , TSUBAKI N , SHAMOTO J , et al . Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al 2 O 3 capsule catalyst for one-step controlled synthesis [J ] . Journal of the American Chemical Society , 2010 , 132 ( 23 ): 8129 - 8136 .
WANG L K , HAN Y , WEI J , et al . Dynamic confinement catalysis in Fe-based CO 2 hydrogenation to light olefins [J ] . Applied Catalysis B: Environmental , 2023 , 328 : 122506 .
JIAO F , LI J J , PAN X L , et al . Selective conversion of syngas to light olefins [J ] . Science , 2016 , 351 ( 6277 ): 1065 - 1068 .
CHENG K , GU B , LIU X L , et al . Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling [J ] . Angewandte Chemie International Edition , 2016 , 55 ( 15 ): 4725 - 4728 .
CHEN S Y , WANG J C , FENG Z D , et al . Hydrogenation of CO 2 to light olefins over ZnZrO x /SSZ‐13 [J ] . Angewandte Chemie International Edition , 2024 , 63 ( 8 ): e202316874 .
KIM S , JHAVERI C A , SASMAZ E . Impact of yttria-stabilized zirconia on direct CO 2 hydrogenation to light olefins over a tandem catalyst composed of In 2 O 3 /YSZ and SAPO-34 [J ] . Energy & Fuels , 2023 , 37 ( 10 ): 7361 - 7371 .
LU P , CHANG X N , YU W J , et al . Synergistic effects of ZnO-ZrO 2 @SAPO-34 core-shell catalyst in catalyzing CO 2 hydrogenation for the synthesis of light olefins [J ] . Renewable Energy , 2023 , 209 : 546 - 557 .
ZHANG L , GENG B , WANG P F , et al . Highly efficient ZnCeZrO x /SAPO-34 catalyst for the direct conversion of CO 2 into light olefins under mild reaction conditions [J ] . Applied Catalysis A: General , 2023 , 657 : 119141 .
YUAN H , ZHENG H P , REN Y , et al . Highly active catalytic CO 2 hydrogenation to lower olefins via spinel ZnGaO x combined with SAPO‐34 [J ] . Chemistry—An Asian Journal , 2023 , 18 ( 4 ): e202201174 .
LU P , RISWAN M , CHANG X N , et al . Hydrogenation of CO 2 to light olefins on ZZ/MnSAPO-34@Si-2: Effect of silicalite-2 seeds on the acidity and catalytic activity [J ] . Fuel , 2022 , 330 : 125470 .
CHERNYAK S A , CORDA M , MARINOVA M , et al . Decisive influence of SAPO-34 zeolite on light olefin selectivity in methanol-meditated CO 2 hydrogenation over metal oxide-zeolite catalysts [J ] . ACS Catalysis , 2023 , 13 ( 22 ): 14627 - 14638 .
LIU X L , WANG M H , YIN H R , et al . Tandem catalysis for hydrogenation of CO and CO 2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34 [J ] . ACS Catalysis , 2020 , 10 ( 15 ): 8303 - 8314 .
DANG S S , GAO P , LIU Z Y , et al . Role of zirconium in direct CO 2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts [J ] . Journal of Catalysis , 2018 , 364 : 382 - 393 .
MOU J , FAN X Q , LIU F , et al . CO 2 hydrogenation to lower olefins over Mn 2 O 3 -ZnO/SAPO-34 tandem catalysts [J ] . Chemical Engineering Journal , 2021 , 421 : 129978 .
WANG S , WANG P F , QIN Z F , et al . Enhancement of light olefin production in CO 2 hydrogenation over In 2 O 3 -based oxide and SAPO-34 composite [J ] . Journal of Catalysis , 2020 , 391 : 459 - 470 .
QIN L , WANG S , FAN S , et al . Selective hydrogenation of CO 2 into ethene and propene over a GaZrO x /H-SAPO-17 composite catalyst [J ] . ACS Catalysis , 2023 , 13 ( 18 ): 11919 - 11933 .
TONG M , GAPU CHIZEMA L , CHANG X N , et al . Tandem catalysis over tailored ZnO-ZrO 2 /MnSAPO-34 composite catalyst for enhanced light olefins selectivity in CO 2 hydrogenation [J ] . Microporous and Mesoporous Materials , 2021 , 320 : 111105 .
WANG S , ZHANG L , WANG P F , et al . Highly effective conversion of CO 2 into light olefins abundant in ethene [J ] . Chem , 2022 , 8 ( 5 ): 1376 - 1394 .
TIAN P , ZHAN G W , TIAN J , et al . Direct CO 2 hydrogenation to light olefins over ZnZrO x mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template [J ] . Applied Catalysis B: Environmental , 2022 , 315 : 121572 .
LIU S K , LIU F , YAO M Q , et al . Bifunctional catalyst consisting of in-modified GaZrO x ternary solid solution oxide and SAPO-34 for efficiently converting CO 2 into light olefins [J ] . Applied Catalysis A: General , 2023 , 667 : 119464 .
WU L L , ZOU R , SHEN C Y , et al . CO 2 hydrogenation to methanol over In 2 O 3 : The size effect [J ] . Energy & Fuels , 2023 , 37 ( 23 ): 18120 - 18127 .
LU S Y , YANG H Y , ZHOU Z X , et al . Effect of In 2 O 3 particle size on CO 2 hydrogenation to lower olefins over bifunctional catalysts [J ] . Chinese Journal of Catalysis , 2021 , 42 ( 11 ): 2038 - 2048 .
PORTILLO A , ATEKA A , ERENA J , et al . Alternative acid catalysts for the stable and selective direct conversion of CO 2 /CO mixtures into light olefins [J ] . Fuel Processing Technology , 2022 , 238 : 107513 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构