浏览全部资源
扫码关注微信
1.西南石油大学 石油与天然气工程学院,四川 成都 610500
2.中国市政工程中南设计研究总院有限公司,湖北 武汉 430010
3.遂宁富禹工业废水处理有限公司,四川 遂宁 629000
4.油气消防四川省重点实验室,四川 成都 611731
张少冬(1999—),硕士研究生,研究方向为油气储运安全工程,E-mail:2231790025@qq.com。
敬加强(1964—),博士,教授,研究方向为非常规原油降黏减阻、复杂油气流动保障以及油气储运工程安全,E-mail:jjq@swpu.edu.cn。
收稿日期:2024-05-06,
修回日期:2024-06-01,
纸质出版日期:2025-02-25
移动端阅览
张少冬,夏宇,张志兴等.气体水合物分子动力学模拟研究进展[J].低碳化学与化工,2025,50(02):137-147.
ZHANG Shaodong,XIA Yu,ZHANG Zhixing,et al.Research progress on molecular dynamics simulations of gas hydrates[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):137-147.
张少冬,夏宇,张志兴等.气体水合物分子动力学模拟研究进展[J].低碳化学与化工,2025,50(02):137-147. DOI: 10.12434/j.issn.2097-2547.20240196.
ZHANG Shaodong,XIA Yu,ZHANG Zhixing,et al.Research progress on molecular dynamics simulations of gas hydrates[J].Low-carbon Chemistry and Chemical Engineering,2025,50(02):137-147. DOI: 10.12434/j.issn.2097-2547.20240196.
分子动力学模拟作为研究微观动力学的重要手段,被广泛应用于气体水合物研究。综述了气体水合物分子动力学模拟研究进展,重点包括模拟方法、评价参数和应用现状。选择适当的力场模型、系综和边界条件对于准确模拟水合物生成过程至关重要。关键的评价参数包括角序参数、水合物笼子数、径向分布函数、均方位移和扩散系数等。分子动力学模拟在研究水合物成核机理和单一添加剂作用机理方面发挥了重要作用。未来研究应进一步探究不同水合物添加剂的协同作用机理,充分利用分子动力学模拟为新型水合物添加剂的研发提供支持和指导,以提升水合物相关技术的应用水平和环保性能。
Molecular dynamics simulations
as an important tool for studying microscopic dynamics
have been widely applied in gas hydrate research. The progress on molecular dynamics simulation studies of gas hydrates was summarized
focusing on simulation methods
evaluation parameters
and current applications. The selection of appropriate force field models
ensembles and boundary conditions is critical for accurately simulating the hydrate formation process. Key evaluation parameters include angular order parameters
hydrate cage counts
radial distribution functions
mean square displacement and diffusion coefficients. Molecular dynamics simulations have played a significant role in understanding the nucleation mechanism of hydrates and the mechanism of single additive effects. Future research should further explore the synergistic mechanisms of different hydrate additives and fully utilize molecular dynamics simulations to provide support and guidance for the development of new hydrate additives
thereby enhancing the application level and environmental performance of hydrate-related technologies.
SLOAN JR E D . Fundamental principles and applications of natural gas hydrates [J ] . Nature , 2003 , 426 ( 6964 ): 353 - 359 .
邓金睿 , 郗军锋 , 陈莉 , 等 . 天然气集输管道水合物防治方法研究进展 [J ] . 石油工业技术监督 , 2023 , 39 ( 4 ): 1 - 6 .
DENG J R , XI J F , CHEN L , et al . Research progress on prevention methods of natural gas hydrate in gas gathering and transportation pipelines [J ] . Technology Supervision in Petroleum Industry , 2023 , 39 ( 4 ): 1 - 6 .
LAN X B , CHEN J , XIE Y , et al . Investigation on the removal performances of heavy metal copper (II) ions from aqueous solutions using hydrate-based method [J ] . Molecules , 2023 , 28 ( 2 ): 469 .
薛倩 , 王晓霖 , 李遵照 , 等 . 水合物利用技术应用进展 [J ] . 化工进展 , 2021 , 40 ( 2 ): 722 - 735 .
XUE Q , WANG X L , LI Z Z , et al . Research progresses in hydrate based technologies and processes [J ] . Chemical Industry and Engineering Progress , 2021 , 40 ( 2 ): 722 - 735 .
敬加强 , 杨航 , 张帅 , 等 . 水合物生成诱导期研究进展 [J ] . 天然气化工—C1化学与化工 , 2021 , 46 ( 6 ): 24 - 32 .
JING J Q , YANG H , ZHANG S , et al . Research progress of hydrate formation induction period [J ] . Natural Gas Chemical Industry , 2021 , 46 ( 6 ): 24 - 32 .
RODGER P M , FORESTER T R , SMITH W . Simulations of the methane hydrate/methane gas interface near hydrate forming conditions [J ] . Fluid Phase Equilibria , 1996 , 116 ( 1 ): 326 - 332 .
敬加强 , 郑天伦 , 杨航 , 等 . 气体水合物添加剂研究进展 [J ] . 天然气化工—C1化学与化工 , 2022 , 47 ( 6 ): 22 - 32 .
JING J Q , ZHENG T L , YANG H , et al . Research progress of gas hydrate additives [J ] . Natural Gas Chemical Industry , 2022 , 47 ( 6 ): 22 - 32 .
王佳琪 , 张昕宇 , 贺佳乐 , 等 . 动力学水合物抑制剂性能与官能团作用研究进展及展望 [J ] . 中南大学学报(自然科学版) , 2022 , 53 ( 3 ): 772 - 798 .
WANG J Q , ZHANG X Y , HE J L , et al . Research progress and prospects of performance of kinetic hydrate inhibitor and effect of functional group [J ] . Journal of Central South University: Science and Technology , 2022 , 53 ( 3 ): 772 - 798 .
李锐 , 宁伏龙 , 张凌 , 等 . 低剂量水合物抑制剂的研究进展 [J ] . 石油化工 , 2018 , 47 ( 2 ): 203 - 210 .
LI R , NING F L , ZHANG L , et al . Progress in the research of the low dosage hydrate inhibitors [J ] . Petrochemical Technology , 2018 , 47 ( 2 ): 203 - 210 .
ZENG Y S , CHEN J , YU X Y , et al . Suppression of methane hydrate dissociation from SDS-dry solution hydrate formation system by a covering liquid method [J ] . Fuel , 2020 , 277 : 118222 .
CHEN J , ZENG Y S , YU X Y , et al . A covering liquid method to intensify self-preservation effect for safety of methane hydrate storage and transportation [J ] . Petroleum Science , 2022 , 19 ( 3 ): 1411 - 1419 .
LIANG Z K , LAN X B , CHEN J , et al . Nickel chloride removal and insights into heavy metal removal by hydrate-based method [J ] . Journal of Molecular Liquids , 2023 , 388 : 122793 .
WU J J , KANG M Q , HU F L , et al . Comparing hydrate-based method with freezing/thawing method for chromium hydroxide sulfate removal close to the melting point of ice [J ] . Separation and Purification Technology , 2021 , 266 : 118523 .
ZHANG H M , LI C , CHEN J , et al . A simulation of methane hydrate formation in nickel chloride solution [J ] . Fuel , 2023 , 340 : 127564 .
ZHANG X M , YANG H J , HUANG T T , et al . Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO 2 hydrate in porous media: A review [J ] . Renewable and Sustainable Energy Reviews , 2022 , 167 : 112820 .
DAS S . A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation [J ] . Journal of Molecular Liquids , 2021 , 348 : 118025 .
THOMPSON A P , AKTULGA H M , BERGER R , et al . LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J ] . Computer Physics Communications , 2022 , 271 : 108171 .
LINDAHL E , HESS B , GROENHOF G , et al . GROMACS: Fast, flexible, and free [J ] . Journal of Computational Chemistry , 2005 , 26 ( 16 ): 1701 - 1718 .
ALTOMARE A , BURLA M C , CAMALLI M , et al . EXPO: A program for full powder pattern decomposition and crystal structure solution [J ] . Journal of Applied Crystallography , 1999 , 32 ( 2 ): 339 - 340 .
HUMPHREY W , DALKE A , SCHULTEN K . VMD: Visual molecular dynamics [J ] . Journal of Molecular Graphics , 1996 , 14 ( 1 ): 33 - 38 .
VEGA C , ABASCAL J L F . Simulating water with rigid non-polarizable models: A general perspective [J ] . Physical Chemistry Chemical Physics , 2011 , 13 ( 44 ): 19663 - 19688 .
SINEHBAGHIZADEH S . A comprehensive review on molecular dynamics simulation studies of phenomena and characteristics associated with clathrate hydrates [J ] . Fuel , 2023 , 338 : 127201 .
BERENDSEN H J C , POSTMA J P M , GUNSTEREN W F , et al . Interaction models for water in relation to protein hydration [M ] // Intermolecular Forces . Dordrecht : Reidel , 1981 : 331 - 342 .
BERENDSEN H J C , GRIGERAJ R , STRAATSMA T P . The missing term in effective pair potentials [J ] . The Journal of Physical Chemistry , 1987 , 91 ( 24 ): 6269 - 6271 .
WU Y J , TEPPER H L , VOTH G A . Flexible simple point-charge water model with improved liquid-state properties [J ] . The Journal of Chemical Physics , 2006 , 124 ( 2 ): 024503 .
JORGENSEN W L . Revised TIPS for simulations of liquid water and aqueous solutions [J ] . The Journal of Chemical Physics , 1982 , 77 ( 8 ): 4156 .
JORGENSEN W L , CHANDRASEKHAR J , MADURA J D , et al . Comparison of simple potential functions for simulating liquid water [J ] . The Journal of Chemical Physics , 1983 , 79 ( 2 ): 926 - 935 .
DOCHERTY H , GALINDO A , VEGA C , et al . A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate [J ] . The Journal of Chemical Physics , 2006 , 125 ( 7 ): 074510 .
HORN H W , SWOPE W C , PITERA J W , et al . Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew [J ] . The Journal of Chemical Physics , 2004 , 120 ( 20 ): 9665 - 9678 .
ABASCAL J L F , SANZ E , FERNÁNDEZ R G , et al . A potential model for the study of ices and amorphous water: TIP4P/Ice [J ] . The Journal of Chemical Physics , 2005 , 122 ( 23 ): 234511 .
RICK S W . Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model [J ] . The Journal of Chemical Physics , 2001 , 114 ( 5 ): 2276 - 2283 .
MAHONEY M W , JORGENSEN W L . A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions [J ] . The Journal of Chemical Physics , 2000 , 112 ( 20 ): 8910 - 8922 .
BACHMANN S J , VAN GUNSTEREN W F . An improved simple polarisable water model for use in biomolecular simulation [J ] . The Journal of Chemical Physics , 2014 , 141 ( 22 ): 22D515 .
YU W , LOPES P E , ROUX B , et al . Six-site polarizable model of water based on the classical Drude oscillator [J ] . The Journal of Chemical Physics , 2013 , 138 ( 3 ): 034508 .
IZADI S , ANANDAKRISHNAN R , ONUFRIEV A V . Building water models: A different approach [J ] . Journal of Physical Chemistry Letters , 2014 , 5 ( 21 ): 3863 - 3871 .
JORGENSEN W L , MADURA J D , SWENSON C J . Optimized intermolecular potential functions for liquid hydrocarbons [J ] . Journal of the American Chemical Society , 1984 , 106 ( 22 ): 6638 - 6646 .
JORGENSEN W L , MAXWELL D S , TIRADORIVES J . Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids [J ] . Journal of the American Chemical Society , 1996 , 118 ( 45 ): 11225 - 11236 .
ZHANG J F , PAN Z J . Effect of potential energy on the formation of methane hydrate [J ] . Journal of Petroleum Science and Engineering , 2011 , 76 ( 3 ): 148 - 154 .
JIAO L J , WANG Z L , LI J , et al . Stability and dissociation studies of CO 2 hydrate under different systems using molecular dynamic simulations [J ] . Journal of Molecular Liquids , 2021 , 338 : 116788 .
TUNG Y T , CHEN L J , CHEN Y P , et al . The growth of structure I methane hydrate from molecular dynamics simulations [J ] . Journal of Physical Chemistry B , 2010 , 114 ( 33 ): 10804 - 10813 .
CHOUDHARY N , DAS S , ROY S , et al . Effect of polyvinylpyrrolidone at methane hydrate-liquid water interface. Application in flow assurance and natural gas hydrate exploitation [J ] . Fuel , 2016 , 186 : 613 - 622 .
BAGHEL V S , KUMAR R , ROY S . Heat transfer calculations for decomposition of structure I methane hydrates by molecular dynamics simulation [J ] . Journal of Physical Chemistry C , 2013 , 117 ( 23 ): 12172 - 12182 .
WALSH M R , KOH C A , SLOAN E D , et al . Microsecond simulations of spontaneous methane hydrate nucleation and growth [J ] . Science , 2009 , 326 ( 5956 ): 1095 - 1098 .
LIANG S , KUSALIK P G . Exploring nucleation of H 2 S hydrates [J ] . Chemical Science , 2011 , 2 ( 7 ): 1286 - 1292 .
CHOUDHARY N , CHAKRABARTY S , ROY S , et al . A comparison of different water models for melting point calculation of methane hydrate using molecular dynamics simulations [J ] . Chemical Physics , 2019 , 516 : 6 - 14 .
YAMAGUCHI S , TAKAYAMA T , OTOSU T . Appraisal of TIP4P-type models at water surface [J ] . The Journal of Chemical Physics , 2023 , 159 ( 17 ): 171101 .
SANDERS S E , PETERSEN P B . Heterodyne-detected sum frequency generation of water at surfaces with varying hydrophobicity [J ] . The Journal of Chemical Physics , 2019 , 150 ( 20 ): 204708 .
BRYAN G H . Elementary principles in statistical mechanics [J ] . Nature , 1902 , 66 ( 1708 ): 291 - 292 .
DENIS J E , GARY M . Statistical mechanics of nonequilibrium liquids [M ] . Cambridge : Cambridge University Press , 2008 .
BAEZ L A . Computer simulation of the crystal growth and dissolution of natural gas hydrate [J ] . Annals of the New York Academy of Science , 1994 , 715 : 177 - 186 .
CAI S Y , TANG Q Z , TIAN S , et al . Molecular simulation study on the microscopic structure and mechanical property of defect-containing si methane hydrate [J ] . International Journal of Molecular Sciences , 2019 , 20 ( 9 ): 2305 .
MAHMOODI M H , MANTEGHIAN M , NAEIJI P . Study the effect of Ag nanoparticles on the kinetics of CO 2 hydrate growth by molecular dynamics simulation [J ] . Journal of Molecular Liquids , 2021 , 343 : 117668 .
MADDAH M , PEYVANDI K . Investigation on structural properties of winter flounder antifreeze protein in interaction with clathrate hydrate by molecular dynamics simulation [J ] . Journal of Chemical Thermodynamics , 2021 , 152 : 106267 .
ZI M C , CHEN D Y , WU G Z . Molecular dynamics simulation of methane hydrate formation on metal surface with oil [J ] . Chemical Engineering Science , 2018 , 191 ( 1 ): 253 - 261 .
MADDAH M , PEYVANDI K . Molecular dynamics simulation of methane hydrate formation in presence and absence of amino acid inhibitors [J ] . Journal of Molecular Liquids , 2018 , 269 ( 2 ): 721 - 732 .
SHI L L , LI J H , CHEN Y , et al . Molecular dynamics simulation study of the cosine oscillation electric field’s effect on methane hydrate growth [J ] . Energy , 2024 , 290 : 130240 .
GUO G J , ZHANG Y G , LIU C J , et al . Using the face-saturated incomplete cage analysis to quantify the cage compositions and cage linking structures of amorphous phase hydrates [J ] . Physical Chemistry Chemical Physics , 2011 , 13 ( 25 ): 12048 - 12057 .
NGUYEN A H , MOLINERO V . Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The CHILL+ algorithm [J ] . The Journal of Physical Chemistry , 2015 , 119 ( 29 ): 9369 - 9376 .
MAHMOUDINOBAR F , DIAS C L . GRADE: A code to determine clathrate hydrate structures [J ] . Computer Physics Communications , 2019 , 244 : 385 - 391 .
HAO Y C , XU Z , DU S , et al . Iterative cup overlapping: An efficient identification algorithm for cage structures of amorphous phase hydrates [J ] . The Journal of Physical Chemistry , 2021 , 125 ( 4 ): 1282 - 1292 .
LIU Y S , XU K , XU Y H , et al . HTR: An ultra-high speed algorithm for cage recognition of clathrate hydrates [J ] . Nanotechnology Reviews , 2022 , 11 ( 1 ): 699 - 711 .
LAURICELLA M , MELONI S , LIANG S , et al . Clathrate structure-type recognition: Application to hydrate nucleation and crystallisation [J ] . The Journal of Chemical Physics , 2015 , 142 ( 24 ): 244503 .
JACOBSON L C , HUJO W , MOLINERO V . Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water [J ] . Journal of Physical Chemistry B , 2009 , 113 ( 30 ): 10298 - 10307 .
ZHANG Z C , WALSH M R , GUO G J . Microcanonical molecular simulations of methane hydrate nucleation and growth: Evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways [J ] . Physical Chemistry Chemical Physics , 2015 , 17 ( 14 ): 8870 - 8876 .
ZHANG Z C , LIU C J , WALSH M R , et al . Effects of ensembles on methane hydrate nucleation kinetics [J ] . Physical Chemistry Chemical Physics , 2016 , 18 ( 23 ): 15602 - 15608 .
ZENG J C , LIU Y S , WU J Y , et al . Cage recognition algorithms of clathrate hydrate and their applications [J ] . Journal of Crystal Growth , 2022 , 600 : 126897 .
CHEN Q J , TIAN J X . A connection between the density and temperature of the Lennard-Jones fluids at equilibrium and the first peak of the radial distribution function [J ] . Fluid Phase Equilibria , 2023 , 567 : 113709 .
LIU N , ZHU H Q , ZHOU J L , et al . Molecular dynamics simulations on formation of CO 2 hydrate in the presence of metal particles [J ] . Journal of Molecular Liquids , 2021 , 331 : 115793 .
HUANG C X , LIN R Y , LU C , et al . Effects of gas to water ratio and nano-Cu dosage on CH 4 hydrate growth: A combined molecular simulation and experimental study [J ] . Fuel , 2024 , 357 : 129663 .
LIAO Q Y , SHI B H , LI S . Molecular dynamics simulation of the effect of wax molecules on methane hydrate formation [J ] . Fuel , 2021 , 297 : 120778 .
FLORIANNE C B , BRAVO U . Molecular dynamics simulation study of the performance of different inhibitors for methane hydrate growth [J ] . Journal of Molecular Liquids , 2021 , 337 : 116510 .
ZHANG J , PIANA S , FREIJ-AYOUB R , et al . Molecular dynamics study of methane in water: Diffusion and structure [J ] . Molecular Simulation , 2007 , 32 ( 15 ): 1279 - 1286 .
ZHANG X M , HUANG T T , SHAN T , et al . Molecular dynamics study of the influence of water molecular phase state on the replacement of CO 2 -CH 4 hydrate in porous media [J ] . Journal of Molecular Liquids , 2023 , 391 : 123401 .
HUO M H , LIU H J , BU Y H , et al . Effect of main functional groups of cement slurry additives on the stability of methane hydrate: Experiment and molecular dynamics simulation [J ] . Geoenergy Science and Engineering , 2023 , 228 : 212024 .
HU Y , CHEN Z X , JIANG Q H , et al . Probing the mechanism of salts destroying the cage structure of methane hydrate by molecular dynamics simulation [J ] . Geoenergy Science and Engineering , 2023 , 223 : 211523 .
XU J F , YANG X L , CHEN J , et al . Molecular study on the growth mechanism of CO 2 -H 2 binary hydrate promoted by electric field [J ] . Fuel , 2024 , 363 : 130924 .
SLOAN E D , FLEYFEL F . A molecular mechanism for gas hydrate nucleation from ice [J ] . AIChE Journal , 1991 , 37 : 1281 - 1292 .
LEKVAM K , RUOFF P . A reaction kinetic mechanism for methane hydrate formation in liquid water [J ] . Journal of the American Chemical Society , 1993 , 115 : 8565 - 8569 .
JACOBSON L C , HUJO W , MOLINERO V . Amorphous precursors in the nucleation of clathrate hydrates [J ] . Journal of the American Chemical Society , 2010 , 132 : 11806 - 11811 .
RADHAKRISHNAN R , TROUT B L . A new approach for studying nucleation phenomena using molecular simulations: Application to CO 2 hydrate clathrates [J ] . The Journal of Chemical Physics , 2002 , 117 : 1786 - 1796 .
GUO G J , ZHANG Y G , ZHAO Y J , et al . Lifetimes of cagelike water clusters immersed in bulk liquid water: A molecular dynamics study on gas hydrate nucleation mechanisms [J ] . The Journal of Chemical Physics , 2004 , 121 ( 3 ): 1542 - 1547 .
VATAMANU J , KUSALIK P G . Observation of two-step nucleation in methane hydrates [J ] . Physical Chemistry Chemical Physics , 2010 , 12 ( 45 ): 15065 - 15072 .
LI Y , ZHU J L , HAN S B , et al . Molecular dynamics simulations of CH 4 /CO 2 hydrates nucleation in kaolinite particles [J ] . Applied Surface Science , 2023 , 607 : 154911 .
LI Y , HAN S B , ZHANG B F , et al . Nucleation and dissociation of carbon dioxide hydrate in the inter- and intra-particle pores of dioctahedral smectite: Mechanistic insights from molecular dynamics simulations [J ] . Applied Clay Science , 2022 , 216 : 106344 .
CHEN J , WU J J , ZENG Y S , et al . Self-preservation effect exceeding 273.2 K by introducing deuteriumoxide to form methane hydrate [J ] . Chemical Engineering Journal , 2022 , 433 ( 1 ): 134591 .
CAO X W , WANG H C , YANG K R , et al . Hydrate-based CO 2 sequ estration technology: Feasibilities, mechanisms, influencing factors, and applications [J ] . Journal of Petroleum Science & Engineering , 2022 , 219 : 111121 .
LU Y Y , GE B B , ZHONG D L . Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage [J ] . Energy , 2020 , 199 : 117424 .
NASHED O , PARTOON B , LAL B , et al . Investigation of functionalized carbon nanotubes’ performance on carbon dioxide hydrate formation [J ] . Energy , 2019 , 174 : 602 - 610 .
LIU N , HUANG J L , ZHU H Q , et al . Effects of carbon nanotube on the nucleation and growth of CO 2 hydrate: Insights from the molecular dynamics simulations [J ] . Journal of Molecular Liquids , 2023 , 390 : 123021 .
LIU N , ZHU H Q , ZHOU J L , et al . Molecular dynamics simulations on formation of CO 2 hydrate in the presence of metal particles [J ] . Journal of Molecular Liquids , 2021 , 331 : 115793 .
BU Y H , LU Z L , LU C , et al . Molecular design and evaluation of hydrate dissociation inhibitors used in cementing slurry based on molecular dynamic simulations [J ] . Fuel , 2023 , 354 : 129317 .
KELLAND M A . History of the development of low dosage hydrate inhibitors [J ] . Energy Fuel , 2006 , 20 ( 3 ): 825 - 847 .
CHENG L W , CUI J L , LI J , et al . High efficient development of green kinetic hydrate inhibitors via combined molecular dynamic simulation and experimental test approach [J ] . Green Chemical Engineering , 2022 , 3 ( 1 ): 34 - 43 .
LI Z , ZHANG Y , SHEN Y M , et al . Molecular dynamics simulation to explore the synergistic inhibition effect of kinetic and thermodynamic hydrate inhibitors [J ] . Energy , 2022 , 238 : 121697 .
LI Y , XIAO S H , YUAN B , et al . Ability of ionic liquids to inhibit the formation of methane hydrate: Insights from molecular dynamics simulations [J ] . Gas Science and Engineering , 2023 , 110 : 204878 .
HU Y , WANG S , YANG X S , et al . Examination of amino acid inhibitor effect in methane hydrate dissociation via molecular dynamics simulation [J ] . Journal of Molecular Liquids , 2021 , 325 : 115205 .
LIU N , ZHOU J L , HONG C F . Molecular dynamics simulations on dissociation of CO 2 hydrate in the presence of inhibitor [J ] . Chemical Physics , 2020 , 538 : 110894 .
CHEN Z R , LIU W G , SUN J G , et al . Alanine rich amphiphilic peptides as green substitutes for hydrate inhibitors: A molecular simulation study [J ] . Journal of Molecular Liquids , 2023 , 370 : 121008 .
LIAO B , SUN J H , WANG J T , et al . Development of novel natural gas hydrate inhibitor and the synergistic inhibition mechanism with NaCl: Experiments and molecular dynamics simulation [J ] . Fuel , 2023 , 353 : 129162 .
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构