浏览全部资源
扫码关注微信
1.天津大学 先进内燃动力全国重点实验室,天津 300350
2.天津大学 天津市超低能耗碳捕集国际联合研究中心,天津 300350
高春霄(2000—),硕士研究生,研究方向为温室气体捕集与高效回收,E-mail:2595571622@qq.com。
赵睿恺(1989—),博士,副研究员,研究方向为吸附法温室气体减排的工程热物理问题,E-mail:ruikaizhao@tju.edu.cn。
纸质出版日期:2025-01-25,
收稿日期:2024-04-30,
修回日期:2024-06-30,
移动端阅览
高春霄, 赵睿恺, 邓帅, 等. 混合绝缘气体变温吸附分离回收SF6优化研究[J]. 低碳化学与化工, 2025,50(1):95-100.
GAO CHUNXIAO, ZHAO RUIKAI, DENG SHUAI, et al. Optimization study of SF6 recovery from mixed insulating gases using temperature swing adsorption. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 95-100.
高春霄, 赵睿恺, 邓帅, 等. 混合绝缘气体变温吸附分离回收SF6优化研究[J]. 低碳化学与化工, 2025,50(1):95-100. DOI: 10.12434/j.issn.2097-2547.20240187.
GAO CHUNXIAO, ZHAO RUIKAI, DENG SHUAI, et al. Optimization study of SF6 recovery from mixed insulating gases using temperature swing adsorption. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 95-100. DOI: 10.12434/j.issn.2097-2547.20240187.
SF
6
是一种强温室气体,从混合绝缘气体(SF
6
体积分数15%、N
2
体积分数85%)中分离回收SF
6
兼具环境和经济效益。研究了变温吸附(TSA)循环回收SF
6
。选取文献报道的SF
6
在13X分子筛上的吸附数据,采用Langmuir模型对吸附数据进行拟合,建立了变温吸附循环模型,并采用遗传算法对循环性能指标进行多目标优化,采用TOPSIS法对Pareto最优解集进行决策。结果表明,Langmuir模型拟合结果可以较好预测吸附数据,决定系数(
R
2
)大于0.98。在Pareto最优解集中,SF
6
回收率和纯度与循环㶲效率呈现竞争关系。当目标函数中回收率、纯度和㶲效率的决策权重按照1:1:1分配时,决策变量中吸附温度取值为293.00 K,解吸温度取
值为382.24 K,此时回收率、纯度和㶲效率分别为87.00%、32.08%和2.68%。变温吸附循环在SF
6
捕集和回收中具有应用潜力。
SF
6
is a potent greenhouse gas
and its recovery from mixed insulating gases (SF
6
volume fraction of 15% and N
2
volume fraction of 85%) by adsorption separation offer both environmental and economic benefits. The recovery of SF
6
using temperature swing adsorption (TSA) cycle was investigated. Adsorption data for SF
6
on zeolite 13X from the literature were used
and the Langmuir model was applied to fit the data
and a TSA cycle model was established. A genetic algorithm was employed for multi-objective optimization of performance indices
and the TOPSIS was used to make decisions on the Pareto optimal solution set. The results show that the Langmuir model can accurately predict adsorption data
with a coefficient of determination (
R
2
) greater than 0.98. In the Pareto optimal solution set
recovery rate and purity of SF
6
exhibit a trade-off with exergy efficiency of cycle. When the decision weights of recovery rate
purity
and exergy efficiency in the objective function are assigned as 1:1:1
the optimal adsorption temperature is 293.00 K
and the optimal desorption temperature is 382.24 K. Under these conditions
the recovery rate
purity and exergy efficiency are 87.00%
32.08% and 2.68%
respectively. The TSA cycle shows potential for application in the capture and recovery of SF
6
.
SF6回收13X分子筛TSA循环多目标优化Pareto最优解集TOPSIS法
SF6 recoveryzeolite 13XTSA cyclemulti-objective optimizationPareto optimal solution setTOPSIS
刘红志, 彭柯. 六氟化硫回收回充净化处理系统的应用研究[J]. 四川电力技术, 2011, 34(1): 52-55.
LIU H Z, PENG K. Application research of SF6 recycling,reuse and purifying system [J]. Sichuan Electric Power Technology, 2011, 34(1): 52-55.
刘英卫, 钟世强, 祁炯, 等. 六氟化硫气体回收处理技术及设备[J]. 电力设备, 2008, 9(8): 14-17.
LIU Y W, ZHONG S Q, QI J, et al. Technology and equipment of recovery and treatment for SF6 gas [J]. Electrical Equipment, 2008, 9(8): 14-17.
CHUAH C Y, LEE Y, BAE T H. Potential of adsorbents and membranes for SF6 capture and recovery: A review [J]. Chemical Engineering Journal, 2021, 404: 126577.
LINDLEY A A, MCCULLOCH A. Regulating to reduce emissions of fluorinated greenhouse gases [J]. Journal of Fluorine Chemistry, 2005, 126(11/12): 1457-1462.
LEE H M, CHANG M B, WU K Y. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas [J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970.
FANG X K, HU X, JANSSENS-MAENHOUT G, et al. Sulfur hexafluoride (SF6) emission estimates for China: an inventory for 1990-2010 and a projection to 2020 [J]. Environmental Science & Technology, 2013, 47(8): 3848-3855.
孙芳芳. 半导体材料·电子气体投资宝典[R]. 杭州: 浙商证券研究所, 2020.
SUN F F. Semiconductor materials · electronic gas investment encyclopedia [R]. Hangzhou: Zheshang Securities Research Institute, 2020.
RAVISHANKARA A R, SOLOMON S, TURNIPSEED A A, et al. Atmospheric lifetimes of long-lived halogenated species [J]. Science, 1993, 259(5092): 194-199.
KIM K, KIM K S, LEE J E, et al. Status of SF6 separation/refining technology development for electric industry in Korea [J]. Separation and Purification Technology, 2018, 200: 29-35.
KO G, LEE J, SEO Y. Separation efficiency and equilibrium recovery ratio of SF6 in hydrate-based greenhouse gas separation [J]. Chemical Engineering Journal, 2021, 405: 126956.
ZHENG X Q, SHEN Y L, WANG S T, et al. Selective adsorption of SF6 in covalent- and metal-organic frameworks [J]. Chinese Journal of Chemical Engineering, 2021, 39: 88-95.
杨帅, 孙洪广. 天然沸石吸附氨氮的影响因素分析和数值模拟[J]. 能源与环保, 2024, 46(2): 23-28.
YANG S, SUN H G. Analysis and numerical simulation of influencing factors on the adsorption of ammonia nitrogen by natural zeolite [J]. China Energy and Environmental Protection, 2024, 46(2): 23-28.
KIM M B, YOON T U, HONG D Y, et al. High SF6/N2 selectivity in a hydrothermally stable zirconium-based metal-organic framework [J]. Chemical Engineering Journal, 2015, 276: 315-321.
CHUAH C Y, YU S, NA K, et al. Enhanced SF6 recovery by hierarchically structured MFI zeolite [J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 64-71.
WANG J J, DENG S, ZHAO R K, et al. Performance evaluation and optimization of vacuum pressure swing adsorption cycle for CF4 recovery using activated carbon [J]. Separation and Purification Technology, 2022, 301: 122023.
CHA J, GA S, LEE S J, et al. Integrated material and process evaluation of metal-organic frameworks database for energy-efficient SF6/N2 separation [J]. Chemical Engineering Journal, 2021, 426: 131787.
王如竹, 何雅玲. 低品位余热的网络化利用[M]. 北京: 科学出版社, 2021: 3-15.
WANG R Z, HE Y L. Network utilization of low-grade waste heat [M]. Beijing: Science Press, 2021: 3-15.
CHEN S R, SHEN Y H, GUAN Z B, et al. Adsorption properties of SF6 on zeolite NaY, 13X, activated carbon, and silica gel [J]. Journal of Chemical & Engineering Data, 2020, 65(8): 4044-4051.
TLILI N, GRÉVILLOT G, VALLIÈRES C. Carbon dioxide capture and recovery by means of TSA and/or VSA [J]. International Journal of Greenhouse Gas Control, 2009, 3(5): 519-527.
JOSS L, GAZZANI M, HEFTI M, et al. Temperature swing adsorption for the recovery of the heavy component: An equilibrium-based shortcut model [J]. Industrial & Engineering Chemistry Research, 2015, 54(11): 3027-3038.
WANG J J, DENG S, ZHAO R K, et al. Performance comparison of three adsorption cycles for CF4 recovery from waste gas using 13X zeolite [J]. Journal of Cleaner Production, 2022, 337: 130546.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构