浏览全部资源
扫码关注微信
1.中国石油大学(北京)克拉玛依校区 工学院,新疆 克拉玛依 834000
2.新疆多介质管道安全输送重点实验室,新疆 乌鲁木齐 830011
3.中国石油天然气股份有限公司规划总院,北京,100083
李欣泽(1987—),博士,高级工程师,研究方向为超临界CO2长距离输送管道运行安全保障关键技术,E-mail:lixinze@cupk.edu.cn。
邢晓凯(1970—),博士,教授,博士研究生导师,研究方向为油气管道输送工艺、多相流与地面集输等,E-mail:xingxk2002@cup.edu.cn。
纸质出版日期:2025-01-25,
收稿日期:2024-04-14,
修回日期:2024-05-12,
移动端阅览
李欣泽, 孙晨, 刘晓飞, 等. 超临界CO2管道停输过程温压及相态变化规律预测[J]. 低碳化学与化工, 2025,50(1):143-152.
LI XINZE, SUN CHEN, LIU XIAOFEI, et al. Prediction of change laws of temperature, pressure and phase state in supercritical CO2 pipeline shutdown process. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 143-152.
李欣泽, 孙晨, 刘晓飞, 等. 超临界CO2管道停输过程温压及相态变化规律预测[J]. 低碳化学与化工, 2025,50(1):143-152. DOI: 10.12434/j.issn.2097-2547.20240157.
LI XINZE, SUN CHEN, LIU XIAOFEI, et al. Prediction of change laws of temperature, pressure and phase state in supercritical CO2 pipeline shutdown process. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 143-152. DOI: 10.12434/j.issn.2097-2547.20240157.
不同于原油、天然气管道,超临界CO
2
管道在停输过程中,需要关注温度和压力共同作用下的CO
2
相态变化。掌握停输过程管道各位置流体温压变化关系、初始气化工况点和气化程度,对实现管道安全状态预判具有重要意义。基于中国石油天然气股份有限公司新疆油田分公司百万吨级超临界CO
2
管道示范工程KB CO
2
管道,建立了管道水力热力模型并求解,获得了管道停输后全线压力、温度、密度、持液率及相态变化规律,发现流体密度值与单位温降对应的压降值存在正相关性。基于Peng-Robinson状态方程,得到流体气化前压力、温度和密度变化的函数表达式,该温压关系在CO
2
相图中为相态迁移路径线的斜率值。该值主要受流体密度影响,流体密度500 kg/m
3
、650 kg/m
3
和800 kg/m
3
对应的斜率值分别为0.213、0.325和0.473。同时,给出了流体初始气化时的温压计算公式和气化后持液率变化预测公式。CO
2
相图中相态迁移路径线与气液平衡线的交点即为流体初始气化压力和温度点。CO
2
流体气化后,压力和温度状态点将沿着气液平衡线移动,直到温度降至管道周围土壤环境温度。采用OLGA软件对推导出的计算公式进行了验证,计算值与模拟值的误差在±4.00%以内,说明公式具有较高的准确性。最后应用公式对示范工程停输过程安全状态进行了预测,发现管道起点发生气化时的压力最高,为避免管道任意点发生气化,需在管道压力降至7.0 MPa前进行再启动操作。
Different from crude oil and natural gas pipelines
it is necessary to pay attention to CO
2
phase change under the combined effect of temperature and pressure during the shutdown process of supercritical CO
2
pipeline
s. It is of great significance to master the temperature-pressure change relationship
initial gasification pressure and temperature and gasification degree during shutdown process
in order to predict pipeline safety status. Based on the KB CO
2
pipeline of PetroChina Xinjiang Oilfield Company’s million-ton supercritical CO
2
pipeline demonstration project
the pipeline hydrothermal model was established and solved to obtain the change of pressure
temperature
density
liquid-holding rate and phase state in whole pipeline after shutdown
and it is found that there is a positive correlation between density of fluid and pressure drop corresponding to unit temperature drop. Based on the Peng-Robinson equation of state
the functional expressions of pressure
temperature and density changes before fluid gasification were obtained
and this temperature-pressure relationship can be expressed as the slope value of phase migration path line in CO
2
phase diagram. This value is mainly affected by fluid density
and the slope values corresponding to fluid densities of 500 kg/m
3
650 kg/m
3
and 800 kg/m
3
are 0.213
0.325 and 0.473
respectively. At the same time
the equations for temperature and pressure during initial gasification of fluid and the prediction equations for change of liquid-holding rate after gasification were given. The intersection point of phase migration path line and gas-liquid equilibrium line in CO
2
phase diagram is the initial gasification pressure and temperature points of fluid. After the gasification of CO
2
fluid
the pressure and temperature state points will be shifted along the gas-liquid equilibrium line until the temperature is reduced to temperature of soil around pipeline. The derived formulas were verified using the industry-recognised OLGA software
and the errors between calculation values and simulation values are within ±4.00%. Finally
the formula was applied to predict the safety state of demonstra
tion project’s during shutdown process. It is found that the pressure at the starting point of pipeline when gasification occurs is the highest. In order to avoid gasification at any point of pipeline
the pipeline needs to be restarted before the pressure drops to 7.0 MPa.
超临界CO2管道输送停输过程相变
supercritical CO2pipeline transportshutdown processphase transition
匡立春, 邹才能, 黄维和, 等. 碳达峰碳中和愿景下中国能源需求预测与转型发展趋势[J]. 石油科技论坛, 2022, 41(1): 9-17.
KUANG L C, ZOU C N, HUANG W H, et al. China’s energy demand projection and energy transition trends under carbon peak and carbon neutrality situation [J]. Petroleum Science and Technology Forum, 2022, 41(1): 9-17.
马冬芬, 祝学军. 新疆碳排放驱动因素与减排策略分析[J]. 煤炭经济研究, 2022, 42(12): 25-31.
MA D F, ZHU X J. Analysis of driving factors and reduction strategies of carbon emissions in Xinjiang [J]. Coal Economic Research, 2022, 42(12): 25-31.
BROWN S, MARTYNOV S, MAHGEREFTEH H, et al. CO2 quest: Techno-economic assessment of CO2 quality effect on its storage and transport [J]. Energy Procedia, 2014, 63: 2622-2629.
黄维和, 李玉星, 陈朋超. 碳中和愿景下中国二氧化碳管道发展战略[J]. 天然气工业, 2023, 43(7): 1-9.
HUANG W H, LI Y X, CHEN P C. China’s CO2 pipeline development strategy under the strategy of carbon neutrality [J]. Natural Gas Industry, 2023, 43(7): 1-9.
陆诗建, 张娟娟, 杨菲, 等. CO2管道输送技术进展与未来发展浅析[J]. 南京大学学报(自然科学版), 2022, 58(6): 944-952.
Lu S J, ZHANG J J, YANG F, et al. Progress and future development trend of CO2 pipeline transportation technology [J]. Journal of Nanjing University (Natural Science), 2022, 58(6): 944-952.
PELETIRI S P, RAHMANIAN N, MUJTABA I M. CO2 Pipeline design: A review [J]. Energies, 2018, 11(9): 2184.
中华人民共和国工业和信息化部. 二氧化碳输送管道工程设计标准: SH/T 3202-2018 [S]. 北京: 中国石化出版社, 2018.
Ministry of Industry and Information Technology of the People’s Republic of China. Specification for engineering of carbon dioxide pipeline transportation: SH/T 3202-2018 [S]. Beijing: China Petrochemical Press, 2018.
国家市场监督管理总局, 国家标准化管理委员会. 二氧化碳捕集、输送和地质封存·管道输送系统: GB/T 42797-2023 [S]. 北京: 中国标准出版社, 2023.
State Administration for Maket Regulation, Standardization Administration. Carbon dioxide capture, transportation and geological storage·pipeline transportation systems: GB/T 42797-2023 [S]. Beijing: Standards Press of China, 2023.
陈嘉琦, 蒲明, 李育天, 等. 国内外CO2管道设计标准对比分析[J]. 油气与新能源, 2023, 35(1): 94-100.
CHEN J Q, PU M, LI Y T, et al. Discussion on domestic and overseas standards for the design of CO2 pipeline [J]. Petroleum and New Energy, 2023, 35(1): 94-100.
李欣泽, 孙佳奇, 袁亮, 等. 超临界CO2管道安全停输再启动过程和安全停输时间影响因素[J]. 大庆石油地质与开发, 2024, 43(6): 136-147.
LI X Z, SUN J Q, YUAN L, et al. Restart process after safe shutdown and influencing factors of safe shutdown time of supercritical CO2 pipeline [J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(6): 136-147.
赵青, 李玉星, 李秋扬. 超临界CO2管道停输过程中安全控制研究[J]. 石油机械, 2015, 43(2): 110-114.
ZHAO Q, LI Y X, LI Q Y. Research on safety control for shutdown of supercritical CO2 pipeline [J]. China Petroleum Machinery, 2015, 43(2): 110-114.
KOEIJERA G D, BORCH J H, JAKOBSENB J, et al. Experiments and modeling of two-phase transient flow during CO2 pipeline depressurization [J]. Energy Procedia, 2009, 1: 1683-1689.
LILJEMARK S, ARVIDSSON K, et al. Dynamic simulation of a carbon dioxide transfer pipeline for analysis of normal operation and failure modes [J]. Energy Procedia, 2011, 4: 3040-3047.
MUNKEJORD S T, JAKOBSEN J P, AUSTEGARD A, et al. Thermo and fluid dynamical modelling of two-phase multi-component carbon dioxide mixtures [J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 589-596.
李玉星, 刘梦诗, 张建. 气体杂质对CO2管道输送系统安全的影响[J]. 天然气工业, 2014, 34(1): 108-113.
LI Y X, LIU M S, ZHANG J. Impacts of gas inpurities on the security of CO2 pipelines [J]. Natural Gas Industry, 2014, 34(1): 108-113.
彭世垚, 贾启运, 李其抚, 等. 适用于超临界CO2管道的稳态输送水力热力计算模型[J]. 天然气与石油, 2024, 42(2): 1-7.
PENG S Y, JIA Q Y, LI Q F, et al. Hydraulic and thermal calculation model of supercritical CO2 steady-state transportation [J]. Natural Gas and Oil, 2024, 42(2): 1-7.
PENG D Y, ROBINSON D B. A new two-constant equation of state [J]. Industrial & Engineering Chemistry Research, 1976, 15: 59-64.
李欣泽, 邹炜杰, 孙晨, 等. 新疆油田某超临界CO2管道安全停输时间预测[J]. 化工进展, 2024, 43(5): 2823-2833.
LI X Z, ZOU W J, SUN C, et al. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang Oilfield [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833.
舒华文. 胜利油田百万吨级CCUS输注采关键工程技术[J]. 油气藏评价与开发, 2024, 14(1): 10-17.
SHU H W. Key engineering technologies of one-million-ton CCUS transportation-injection-extraction in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 10-17.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构