
浏览全部资源
扫码关注微信
1.天津城建大学 理学院,天津 300384
2.中国科学院 宁波材料技术与工程研究所,浙江 宁波 315201
3.宁波工程学院 材料与化学工程学院,浙江 宁波 315211
陈敏婷(1999—),硕士研究生,研究方向为催化材料,E-mail:chenminting@nimte.ac.cn。
于洪波(1984—),博士后,副研究员,研究方向为纳米催化,E-mail:hongboyu@nbut.edu.cn;
张守超(1982—),博士,副教授,研究方向为晶体缺陷及其应用,E-mail:zhshch@tcu.edu.cn;
尹宏峰(1977—),博士后,研究员,研究方向为纳米材料合成及其在催化反应中的应用与机理分析, E-mail:yinhf@nimte.ac.cn。
纸质出版日期:2024-12-25,
收稿日期:2024-03-24,
修回日期:2024-05-05,
移动端阅览
陈敏婷,于洪波,张守超等.Pd-CuO@mSiO2催化剂的制备及其选择性催化取代硝基芳烃加氢制取代芳胺[J].低碳化学与化工,2024,49(12):39-46.
CHEN Minting,YU Hongbo,ZHANG Shouchao,et al.Preparation of Pd-CuO@mSiO2 catalyst and its selective catalytic hydrogenation of substituted nitroaromatics to substituted aromatic amines[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):39-46.
陈敏婷,于洪波,张守超等.Pd-CuO@mSiO2催化剂的制备及其选择性催化取代硝基芳烃加氢制取代芳胺[J].低碳化学与化工,2024,49(12):39-46. DOI: 10.12434/j.issn.2097-2547.20240120.
CHEN Minting,YU Hongbo,ZHANG Shouchao,et al.Preparation of Pd-CuO@mSiO2 catalyst and its selective catalytic hydrogenation of substituted nitroaromatics to substituted aromatic amines[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):39-46. DOI: 10.12434/j.issn.2097-2547.20240120.
取代硝基芳烃选择性催化加氢是制备取代芳胺的有效方法,精确调控贵金属催化剂在该反应中的反应位点和增强其催化稳定性是亟待解决的难题。采用溶胶-凝胶法制备了含PdCu合金的SiO
2
核壳型前体(PdCu@SiO
2
),进而制备了含PdO-CuO的介孔核壳SiO
2
催化剂(PdO-CuO@mSiO
2
)、含Pd-CuO的介孔核壳SiO
2
催化剂(Pd-CuO@mSiO
2
)和含PdCu合金的介孔核壳SiO
2
催化剂(PdCu@mSiO
2
)。采用TEM、XRD和TG等对催化剂进行了表征,并研究了催化剂对4-硝基氯苯选择性催化加氢制4-氨基氯苯的催化性能。结果表明,在最优条件(0.5 mmol 4-硝基氯苯、12.0 mL乙醇、80 ℃和1.0 MPa)下反应4.0 h,相比Pd@mSiO
2
和PdCu@mSiO
2
,Pd-CuO@mSiO
2
具有更好的催化性能,其4-硝基氯苯转化率为96.5%,4-氨基氯苯选择性为99.6%。Pd-CuO@mSiO
2
的良好催化性能与其结构中Pd与CuO之间的强相互作用有关。同时Pd-CuO@mSiO
2
在间氯硝基苯、对硝基苯乙酮和4-硝基苯甲酸乙酯的催化加氢反应中也表现出了较好的催化性能。此外,Pd-CuO@mSiO
2
在最优反应条件下经过5次循环后,其4-硝基氯苯转化率和4-氨基氯苯选择性分别维持在96.4%和95.7%。
Selective catalytic hydrogenation of substituted nitroaromatic hydrocarbons is an effective method to prepare substituted aromatic amines. It is an urgent problem to precisely regulate the reaction site of precious metal catalyst and enhance its catalytic stability in this reaction. The SiO
2
core-shell precursor containing PdCu alloy (PdCu@SiO
2
) was prepared by sol-gel method. Then the mesoporous core-shell SiO
2
catalyst containing PdO-CuO (PdO-CuO@mSiO
2
)
the mesoporous core-shell SiO
2
catalyst containing Pd-CuO (Pd-CuO@mSiO
2
) and the mesoporous core-shell SiO
2
catalyst containing PdCu alloy (PdCu@mSiO
2
) were prepared. The catalysts were characterized by TEM
XRD and TG
etc.
and their catalytic performances for selective catalytic hydrogenation of 4-nitrochlorobenzene to 4-aminochlorobenzene were studied. The results show that reaction under the optimal conditions (0.5 mmol 4-nitrochlorobenzene
12.0 mL ethanol
80 ℃ and 1.0 MPa) for 4.0 h
Pd-CuO@mSiO
2
has better catalytic performance than Pd@mSiO
2
and PdCu@mSi
O
2
with 4-nitrochlorobenzene conversion rate of 96.5% and 4-amino-chlorobenzene selectivity of 99.6%. The good catalytic performance of Pd-CuO@mSiO
2
is related to the strong interaction between Pd and CuO in the structure. Pd-CuO@mSiO
2
also shows good catalytic performance for the catalytic hydrogenation of
m
-chloronitrobenzene
p
-nitroacetophenone and 4-nitrobenzoate. In addition
cycling under the optimal reaction conditions for five times
the 4-nitrochlorobenzene conversion rate and 4-amino-chlorobenzene selectivity of Pd-CuO@mSiO
2
maintain at 96.4% and 95.7%
respectively.
取代硝基芳烃Pd基核壳型催化剂选择性加氢取代芳胺
substituted nitroaromaticsPd-based core-shell catalystsselective hydrogenationsubstituted aromatic amines
CHEN H, HE D P, HE Q Q, et al. Selective hydrogenation of p-chloronitrobenzene over an Fe promoted Pt/AC catalyst [J]. RSC Advances, 2017, 7(46): 29143-29148.
HU Z, TAN S Q, MI R L, et al. Solvent-controlled reactivity of Au/CeO2 towards hydrogenation of p-chloronitrobenzene [J]. Catalysis Letters, 2018, 148(5): 1490-1498.
ZHU D H, LONG L, SUN J Y, et al. Highly active and selective catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline on Pt@Cu/TiO2 [J]. Applied Surface Science, 2020, 504: 144329.
BANERJEE B, SINGURU R A, KUNDU S K, et al. Towards rational design of core-shell catalytic nanoreactor with high performance catalytic hydrogenation of levulinic acid [J]. Catalysis Science & Technology, 2016, 6(13): 5102-5115.
BUSTAMANTE T M, CAMPOS C H, FRAGA M A, et al. Promotional effect of palladium in Co-SiO2 core@shell nanocatalysts for selective liquid phase hydrogenation of chloronitroarenes [J]. Journal of Catalysis, 2020, 385: 224-237.
LEE I, ZHANG Q, GE J P, et al. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability [J]. Nano Research, 2010, 4(1): 115-123.
YU H B, TANG W Q, LI K J, et al. Enhanced catalytic performance for hydrogenation of substituted nitroaromatics over Ir-based bimetallic nanocatalysts [J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6958-6969.
YU H B, TANG W Q, LI K J, et al. Design of Cu-based intermetallic nanocrystals for enhancing hydrogenation selectivity [J]. Chemical Engineering Science, 2019, 196: 402-413.
IIHAMA S, FURUKAWA S, KOMATSU T. Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound [J]. ACS Catalysis, 2015, 6(2): 742-746.
LI Q, YU H B, LI K J, et al. Controlled synthesis and enhanced catalytic activity of well-defined close-contact Pd-ZnO nanostructures [J]. Langmuir, 2019, 35(19): 6288-6296.
YU H B, WU C Z, WANG S W, et al. Transition metal oxide-modified Ir nanoparticles supported on SBA-15 silica for selective hydrogenation of substituted nitroaromatics [J]. ACS Applied Nano Materials, 2021, 4(7): 7213-7220.
WANG W C, ZHANG H K, ZHOU F Y, et al. Al-doped core-shell-structured Ni@mesoporous silica for highly selective hydrodeoxygenation of lignin-derived aldehydes [J]. ACS Applied Materials & Interfaces, 2023, 15(28): 33654-33664.
MEI S L, XU X H, PRIESTLEY R D, et al. Polydopamine-based nanoreactors: Synthesis and applications in bioscience and energy materials [J]. Chemical Science, 2020, 11(45): 12269-12281.
HAMMOND P E, ZHANG X H, WU D, et al. Precise tuning of silica pore length and pore diameter on silica-encapsulated gold core-shell nanoparticles and catalytic impact [J]. Chemical Engineering Journal, 2023, 475: 146043.
WANG E H, SONG Y D, MEI J L, et al. Highly dispersed Pt catalysts on hierarchically mesoporous organosilica@silica nanoparticles with a core-shell structure for polycyclic aromatic hydrogenation [J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10761-10773.
WANG W, HE L, LUO Q X, et al. Synthesis and application of core-shell, hollow, yolk-shell multifunctional structure zeolites [J]. Microporous and Mesoporous Materials, 2023, 362: 112766.
HU Y B, TAO K, WU C Z, et al. Size-controlled synthesis of highly stable and active Pd@SiO2 core-shell nanocatalysts for hydrogenation of nitrobenzene [J]. The Journal of Physical Chemistry C, 2013, 117(17): 8974-8982.
WANG S J, WU C Z, YU H B, et al. Fabrication of Ir-CoOx@mesoporous SiO2 nanoreactors for selective hydrogenation of substituted nitroaromatics [J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9966-9976.
LIU G Q, SHU L, YAN D W, et al. High durability for PdNi nano-film hydrogen sensor [J]. International Journal of Hydrogen Energy, 2024, 50: 1146-1156.
PANG M Y, YANG M, YAN J, et al. Assembly of alloyed PdCu nanosheets and their electrocatalytic oxidation of ethanol [J]. Langmuir, 2022, 38(14): 4287-4294.
张瀚, 王磊, 胡广林, 等. Pd/CNTs金属纳米催化剂的制备及其催化对氯硝基苯加氢性能[J]. 化学试剂, 2017, 39(11): 1142-1145.
ZHAN H, WANG L, HU G L, et al. Preparation of Pt/CNTs nano-catalyst and performance in hydrogenation of p-chloronitrobenzene [J]. Chemical Reagents, 2017, 39(11): 1142-1145.
GAO Z Y, ZHOU Z J, WANG M Y, et al. Highly dispersed Pd anchored on heteropolyacid modified ZrO2 for high efficient hydrodeoxygenation of lignin-derivatives [J]. Fuel, 2023, 334: 126768.
陈执, 吴凡, 高新芊, 等. 造核-包衣法制备Al2O3小球及其在丙烷直接脱氢反应中的应用研究[J]. 低碳化学与化工, 2024, 49(2): 49-59.
CHEN Z, WU F, GAO X Q, et al. Study on preparation of spherical Al2O3 by nucleation-coating method and its application in propane dehydrogenation [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(2): 49-59.
YANG F, YU H B, WU C Z, et al. RhCu bimetallic nanoparticles in hollow carbon spheres for catalytic halonitrobenzene chemoselective hydrogenation [J]. ACS Applied Nano Materials, 2022, 5(8): 11627-11635.
LIU H M, TAO K, XIONG C R, et al. Controlled synthesis of Pd-NiO@SiO2 mesoporous core-shell nanoparticles and their enhanced catalytic performance for p-chloronitrobenzene hydrogenation with H2 [J]. Catalysis Science & Technology, 2015, 5(1): 405-414.
SIEBEN J M, SANCHEZ M D. Glycerol electrooxidation on carbon-supported Pt-CuO and PtCu-CuO catalysts [J]. Electrochimica Acta, 2023, 439: 141672.
XIE L F, CHEN T, CHAN H C, et al. Hydrogen doping into MoO3 supports toward modulated metal-support interactions and efficient furfural hydrogenation on iridium nanocatalysts [J]. Chemistry—An Asian Journal, 2018, 13(6): 641-647.
YAO J K, XU Y J, YANG H, et al. Identifying the metallic state of Rh catalyst on boron nitride during partial oxidation of methane by using the product molecule as the infrared probe [J]. Catalysts, 2022, 12(10): 1146.
CHATURBEDY P, AHAMED M, ESWARAMOORTHY M. Oxidative dehydrogenation of propane over a high surface area boron nitride catalyst: Exceptional selectivity for olefins at high conversion [J]. ACS Omega, 2018, 3(1): 369-374.
GAUTAM C, YADAV A K, SINGH A K. A review on infrared spectroscopy of borate glasses with effects of different additives [J]. ISRN Ceramics, 2012, (5): 1-17.
MAIER J, NÖTH A. Wet-chemical coating of silicon carbide fibers with hexagonal boron nitride layers [J]. Journal of the European Ceramic Society, 2021, 41(13): 6207-6212.
FENG C Y, TANG L, DENG Y C, et al. Enhancing optical absorption and charge transfer: Synthesis of S-doped h-BN with tunable band structures for metal-free visible-light-driven photocatalysis [J]. Applied Catalysis B: Environmental, 2019, 256: 117827.
NAKAMURA S, TAKAGAKI A, WATANABE M, et al. Porous boron nitride as a weak solid base catalyst [J]. ChemCatChem, 2020, 12(23): 6033-6039.
WANG T C, YIN J L, GUO X J, et al. Modulating the crystallinity of boron nitride for propane oxidative dehydrogenation [J]. Journal of Catalysis, 2021, 393: 149-158.
ZHOU M, YANG P J, YUAN R S, et al. Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols [J]. ChemSusChem, 2017, 10(22): 4451-4456.
戴莉. 缺陷型多孔六方氮化硼的构筑及其催化氧化燃油脱硫研究[D]. 镇江: 江苏大学, 2021.
DAI L. Construction of defective and porous hexagonal boron nitride and their application on catalytic oxidation desulfurization of fuel [D]. Zhenjiang: Jiangsu University, 2021.
ZHANG R, YANG X, TAO Z, et al. Insight into the effective aerobic oxidative cross-esterification of alcohols over Au/porous boron nitride catalyst [J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46678-46687.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构