浏览全部资源
扫码关注微信
1.四川大学 化学工程学院,四川 成都 610065
2.中国科学院 大连化学物理研究所,辽宁 大连 116023
3.大连交通大学 环境与化学工程学院,辽宁 大连 116028
黄佳怡(1999—),硕士研究生,研究方向为工业催化, E-mail:huangjiayi@dicp.ac.cn。
储伟(1965—),博士,教授,研究方向为催化材料, E-mail:chuwei1965@scu.edu.cn;
刘岳峰(1985—),博士,研究员,研究方向为多相加氢催化剂,E-mail:yuefeng.liu@dicp.ac.cn。
纸质出版日期:2025-01-25,
收稿日期:2024-03-22,
修回日期:2024-04-15,
移动端阅览
黄佳怡, 任小敏, 马军, 等. 碳化钼负载Ru基催化剂的5-硝基苯并噻唑加氢性能研究[J]. 低碳化学与化工, 2025,50(1):87-94.
HUANG JIAYI, REN XIAOMIN, MA JUN, et al. Study on performances of molybdenum carbide supported Ru-based catalysts for 5-nitrobenzothiazole hydrogenation. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 87-94.
黄佳怡, 任小敏, 马军, 等. 碳化钼负载Ru基催化剂的5-硝基苯并噻唑加氢性能研究[J]. 低碳化学与化工, 2025,50(1):87-94. DOI: 10.12434/j.issn.2097-2547.20240116.
HUANG JIAYI, REN XIAOMIN, MA JUN, et al. Study on performances of molybdenum carbide supported Ru-based catalysts for 5-nitrobenzothiazole hydrogenation. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 87-94. DOI: 10.12434/j.issn.2097-2547.20240116.
使用负载型金属催化剂催化含硫底物加氢时,由于硫在金属表面的强吸附可导致催化剂活性变差甚至完全失活。采用过体积浸渍法制备了不同晶相碳化钼负载Ru基催化剂(Ru/
α
-MoC和Ru/
β
-Mo
2
C),并用于催化5-硝基苯并噻唑(5-NBT)加氢。利用SEM、XRD、HR-TEM和XPS等对催化剂进行了表征。结果表明,
α
-MoC上负载的Ru为原子级分散,而
β
-Mo
2
C上负载的Ru以纳米颗粒形式分散。在80 °C、2.0 MPa H
2
、3 mL乙醇、10 mg底物和10 mg催化剂的条件下,当5-NBT转化率低于30%时,Ru/
α
-MoC的5-NBT加氢反应速率为9113 μmol/(g·h);反应40 min时,Ru/
α
-MoC的5-NBT转化率为100%。氢-氘交换实验结果证实
α
-MoC对5-NBT硝基的活化(吸附活化)有重要作用,而Ru对H
2
解离有促进作用,这两方面作用的协同效应使Ru/
α
-MoC在5-NBT加氢中表现出相对更高的催化性能。
When the supported metal catalyst is used to catalyze the hydrogenation of sulfur-containing substrates
the activity of the catalyst can be deteriorated or even completely deactivated due to the strong adsorption of sulfur on the metal surface. Ru-based catalysts (Ru/
α
-MoC and Ru/
β
-Mo
2
C) supported by molybdenum carbide with different crystalline phases were prepared by over volume impregnation method and used to catalyze 5-nitrobenzothiazole (5-NBT) hydrogenation. The catalysts were characterized by SEM
XRD
HR-TEM and XPS
etc. The results show that the Ru loaded on
α
-MoC is atomically dispersed
while the Ru loaded on
β
-Mo
2
C is dispersed in the form of nanoparticles. Under the conditions of 80 ℃
2.0 MPa H
2
3 mL ethanol
10 mg substrate and 10 mg catalyst
the 5-NBT hydrogenation rate of Ru/
α
-MoC is 9113 μmol/(g·h) when the 5-NBT conversion rate is lower than 30%. After reaction for 40 min
the 5-NBT conversion rate of Ru/
α
-MoC is 100%. The result of
hydrogen-deium exchange experiment confirms that
α
-MoC plays an important role in the activation (adsorption activation) of 5-NBT nitro group
while Ru promotes H
2
dissociation. The synergistic effect of these two effects makes Ru/
α
-MoC show relatively higher catalytic performance in 5-NBT hydrogenation.
催化加氢Ru基催化剂碳化钼5-硝基苯并噻唑加氢
catalytic hydrogenationRu-based catalystsmolybdenum carbide5-nitrobenzothiazole hydrogenation
HUANG G, CIERPICKI T, GREMBECKA J. 2-Aminobenzothiazoles in anticancer drug design and discovery [J]. Bioorganic Chemistry, 2023, 135: 106477.
LIAO C Y, KIM U J, KANNAN K. A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles [J]. Environmental Science & Technology, 2018, 52(9): 5007-5026.
TOULOT S, HEINRICH T, LEROUX F R. Convenient and reliable routes towards 2-aminothiazoles: Palladium-catalyzed versus copper-catalyzed aminations of halothiazoles [J]. Advanced Synthesis & Catalysis, 2013, 355(16): 3263-3272.
SAHOO S K, BANERJEE A, CHAKRABORTY S, et al. Regioselective intramolecular arylthiolations by ligand free Cu and Pd catalyzed reaction [J]. ACS Catalysis, 2012, 2(4): 544-551.
SOMORJAI G A. On the mechanism of sulfur poisoning of platinum catalysts [J]. Journal of Catalysis, 1972, 27(3): 453-456.
BARTHOLOMEW C H, AGRAWAL P K, KATZER J R. Sulfur poisoning of metals [J]. Advances in Catalysis, 1982, 31: 135-242.
XIONG R J, REN W Q, WANG Z Q, et al. Triphenylphosphine as efficient antidote for the sulfur-poisoning of the Pd/C hydrogenation catalyst [J]. ChemCatChem, 2021, 13(2): 548-552.
GAO S, WANG L X, LI H, et al. Core-shell PdAu nanocluster catalysts to suppress sulfur poisoning [J]. Physical Chemistry Chemical Physics, 2021, 23(28): 15010-15019.
XIAO M L, HAN D W, YANG X Q, et al. Ni-doping-induced oxygen vacancy in Pt-CeO2 catalyst for toluene oxidation: Enhanced catalytic activity, water-resistance, and SO2-tolerance [J]. Applied Catalysis B: Environmental, 2023, 323: 122173.
宋天远, 梁美生, 李巧艳, 等. Sn调变Cu电子结构改善Cu/CeZrO2抗硫性能[J]. 太原理工大学学报, 2023, 54(1): 39-47.
SONG T Y, LIANG M S, LI Q Y, et al. Sn-doping modulated Cu electronic structure to improves the sulfur resistance of Cu/CeZrO2 [J]. Journal of Taiyuan University of Technology, 2023, 54(1): 39-47.
HU L J, XIA G F, QU L L, et al. Strong effect of transitional metals on the sulfur resistance of Pd/HY-Al2O3 catalysts for aromatic hydrogenation [J]. Journal of Molecular Catalysis A: Chemical, 2001, 171(1/2): 169-179.
XIONG R J, CHENG M, WANG R F, et al. A carbon shell covered Pd catalyst for hydrogenation of 4-nitrothioanisole [J]. Catalysis Letters, 2022, 152(12): 3607-3616.
ZHANG X J, ZHOU Y B, LI G W, et al. A highly sulfur resistant and stable heterogeneous catalyst for liquid-phase hydrogenation [J]. Applied Catalysis B: Environmental, 2022, 315: 121566.
ZHOU W Q, TEO W L, PHUA S Z F, et al. Impeding catalyst sulfur poisoning in aqueous solution by metal-organic framework composites [J]. Small Methods, 2020, 4(5): 1900890.
JEYAVANI V, KONDHEKAR D, BHATI M, et al. Remarkable SO2 and H2S resistant ability on CO oxidation by unique Pd/WO3 3D hollow sphere nanocatalyst: Correlating structure-activity relationships on SO2 exposure [J]. ACS Applied Energy Materials, 2024, 7(4): 1476-1487.
LIU X Y, REN Y Q, WANG M D, et al. Cooperation of Pt and TiOx in the hydrogenation of nitrobenzothiazole [J]. ACS Catalysis, 2022, 12(18): 11369-11379.
ZHANG Q C, XU D Y, CAI A, et al. Chemoselective hydrogenation of nitro compounds by MoS2 via introduction of independent active hydrogen-donating sites [J]. ACS Catalysis, 2022, 12(19): 12170-12178.
FU J H, DONG J H, SI R, et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst [J]. ACS Catalysis, 2021, 11(4): 1952-1961.
LIN L L, YAO S Y, GAO R, et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation [J]. Nature Nanotechnology, 2019, 14(4): 354-361.
WEI Y, WANG S, ZHANG Y L, et al. Hydrogenation of nitroarenes by onsite-generated surface hydroxyl from water [J]. ACS Catalysis, 2023, 13(24): 15824-15832.
CAO S, MA Y, CHU W, et al. High-density MoCx nanoclusters anchored on nanodiamond-derived nanocarbon as a robust CO2 reduction catalyst for syngas production [J]. Fuel, 2022, 323: 124347.
WANG H Y, DIAO Y N, GAO Z R, et al. H2 production from methane reforming over molybdenum carbide catalysts: From surface properties and reaction mechanism to catalyst development [J]. ACS Catalysis, 2022, 12(24): 15501-15528.
POROSOFF M D, BALDWIN J W, PENG X, et al. Potassium‐promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO [J]. ChemSusChem, 2017, 10(11): 2408-2415.
ZHANG X Y, XIA L X, ZHAO G Q, et al. Fast and durable alkaline hydrogen oxidation reaction at the electron-deficient ruthenium-ruthenium oxide interface [J]. Advanced Materials, 2023, 35(9): 2208821.
LI Y Z, ABBOTT J, SUN Y C, et al. Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values [J]. Applied Catalysis B: Environmental, 2019, 258: 117952.
MU X Q, LIU S L, ZHANG M Y, et al. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation [J]. Angewandte Chemie International Edition, 2024, 136(12): e202319618.
姚正阳, 王晓月, 郭晓宏, 等.多相催化加氢反应中H2异裂解离的研究进展[J]. 低碳化学与化工, 2024, 49(1): 1-11.
YAO Z Y, WANG X Y, GUO X H, et al. Research progress of H2 heterolysis in heterogeneous catalytic hydrogenation [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(1): 1-11.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构