
浏览全部资源
扫码关注微信
1.太原理工大学 原位改性采矿教育部重点实验室,山西 太原 030024
2.太原市生态环境监测与科学研究中心,山西 太原 030002
3.太原科技大学 安全与应急管理工程学院,山西 太原 030024
靳鸿铨(1997—),硕士研究生,研究方向为水合物技术,E-mail:767340304@qq.com。
赵建忠(1976—),博士,副教授,研究方向为水合物技术,E-mail:zhaojianzhong@tyut.edu.cn。
纸质出版日期:2024-12-25,
收稿日期:2024-03-11,
修回日期:2024-04-18,
移动端阅览
靳鸿铨,赵建忠,牛晓明等.注液态CO2开采天然气水合物实验研究[J].低碳化学与化工,2024,49(12):134-140.
JIN Hongquan,ZHAO Jianzhong,NIU Xiaoming,et al.Experimental research on injection of liquid CO2 for exploiting natural gas hydrates[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):134-140.
靳鸿铨,赵建忠,牛晓明等.注液态CO2开采天然气水合物实验研究[J].低碳化学与化工,2024,49(12):134-140. DOI: 10.12434/j.issn.2097-2547.20240092.
JIN Hongquan,ZHAO Jianzhong,NIU Xiaoming,et al.Experimental research on injection of liquid CO2 for exploiting natural gas hydrates[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):134-140. DOI: 10.12434/j.issn.2097-2547.20240092.
注液态CO
2
开采天然气水合物既能安全采出CH
4
又能原位固碳。为揭示开采过程中CO
2
相态对水合物储层的影响规律,采用水合物三轴渗透实验装置,在NaCl体系中,以石英砂为多孔介质,注入CH
4
气体生成甲烷水合物,以此模拟天然气水合物储层。在4.5 MPa的孔隙压应力下,分别研究了注液态CO
2
开采对甲烷水合物分解行为的影响,反应温度对注液态CO
2
开采甲烷水合物的影响,以及反应温度对注液态CO
2
开采甲烷水合物后储层水合物饱和度的影响。结果表明,注液态CO
2
开采对甲烷水合物的分解有促进作用,反应温度为8.0 ℃、反应压力为4.5 MPa时,相较于降压法开采,注液态CO
2
开采CH
4
采出量提高了22.81%,CH
4
采出率提高了13.66%。在液态CO
2
环境中,高的反应温度有利于甲烷水合物分解,相较于6.0 ℃,反应温度为10.0 ℃时CH
4
采出量提高了40.41%。与CO
2
水合物生成时释放的热量相比,高的反应温度在促进水合物分解中占主导作用。随反应温度升高,CO
2
封存量、转化率和开采后储层水合物饱和度均降低。反应温度为6.0 ℃和10.0 ℃时,CO
2
封存量分别为0.1962 mol和0.1034 mol,CO
2
转化率分别为22.08%和11.86%,开采后储层水合物饱和度分别为57.91%和34.21%,较平均初始饱和度(41.72%)分别提高了38.81%和降低了18.01%。注液态CO
2
开采天然气水合物对提高CH
4
采出量和采出率,以及促进CO
2
封存具有积极作用。
Injection of liquid CO
2
for exploiting natural gas hydrates can safely produce CH
4
while sequestering carbon in situ. To reveal the influence of CO
2
phase states on hydrate reservoirs during extraction
a triaxial hydrate penetration experimental apparatus was used. In a NaCl system
quartz sand served as the porous medium
CH
4
gas was injected to form methane hydrate
simulating natural gas hydrate reservoirs. Under a pore pressure stress of 4.5 MPa
the effects of liquid CO
2
injection on the decomposition behavior of methane hydrate
the impact of reaction temperature on methane hydrate extraction by liquid CO
2
injection
and the influence of reaction temperature on the post-extraction hydrate saturation of the reservoir were studied
respectively. The results show that injection of liquid CO
2
promotes the decomposition of methane hydrate. At the reaction temperature of 8.0 ℃ and the reaction pressure of 4.5 MPa
compared with the depressurization method
injection of liquid CO
2
increases CH
4
producti
on by 22.81% and the recovery rate by 13.66%. In a liquid CO
2
environment
higher reaction temperatures are favorable for the decomposition of methane hydrate. Compared to 6.0 ℃
the CH
4
production increases by 40.41% at 10.0 ℃. Higher reaction temperatures play a dominant role in promoting hydrate decomposition
compared to the heat released during CO
2
hydrate formation. As the reaction temperature increases
CO
2
sequestration amount
conversion rate
and post-extraction reservoir hydrate saturation all decrease. At reaction temperatures of 6.0 ℃ and 10.0 ℃
CO
2
sequestration amounts are 0.1962 mol and 0.1034 mol
CO
2
conversion rates are 22.08% and 11.86%
and post-extraction reservoir hydrate saturations are 57.91% and 34.21%
respectively
which increases by 38.81% and decreases by 18.01%
compared to the average initial saturation (41.72%). Injection of liquid CO
2
for exploiting natural gas hydrates has a positive effect on increasing CH
4
production and recovery rates
as well as promoting CO
2
sequestration.
液态CO2水合物开采天然气水合物CO2封存
liquid CO2hydrate extractionnatural gas hydratesCO2 sequestration
QIN X W, LIANG Q Y, YE J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea [J]. Applied Energy, 2020, 278: 115649.
ZHAO J F, LIU Y L, GUO X W, et al. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization [J]. Applied Energy, 2020, 260: 114275.
KONG Z Y, JIANG Q Z, DONG X C, et al. Estimation of China’s production efficiency of natural gas hydrates in the South China Sea [J]. Journal of Cleaner Production, 2018, 203: 1-12.
YAN C L, DONG L F, REN X, et al. Stability of submarine slopes during replacement of methane in natural gas hydrates with carbon dioxide [J]. Journal of Cleaner Production, 2023, 383: 135440.
YAN C L, CHEN Y, TIAN W Q, et al. Effects of methane-carbon dioxide replacement on the mechanical properties of natural gas hydrate reservoirs [J]. Journal of Cleaner Production, 2022, 354: 131703.
KOH D Y, KANG H, LEE J W, et al. Energy-efficient natural gas hydrate production using gas exchange [J]. Applied Energy, 2016, 162: 114-130.
SCHODERBEK D, MARTIN K L, HOWARD J, et al. North slope hydrate field trial: CO2/CH4 exchange [C]//OTC Arctic Technology Conference. OTC, 2012: OTC-23725-MS.
OTA M, SAITO T, AIDA T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE journal, 2007, 53(10): 2715-2721.
OTA M, ABE Y. Methane recovery from methane hydrate using pressurized CO2 [J]. Fluid Phase Equilibria, 2005, 228: 553-559.
MUSAKAEV N G, KHASANOV M K, STOLPOVSKY M V. Replacement of CH4 with CO2 in a hydrate reservoir at the injection of liquid carbon dioxide [C]//AIP Conference Proceedings. AIP Publishing, 2018, 2027(1): 030051.
曹潇潇, 艾小倩, 郭云均, 等. 二氧化碳置换法开采天然气水合物的研究现状[J]. 广州化工, 2023, 51(13): 10-12.
CAO X X, AI X Q, GUO Y J, et al. Research status of natural gas hydrate extraction by carbon dioxide replacement [J]. Guangzhou Chemical Industry, 2023, 51(13): 10-12.
王敏, 徐刚, 蔡晶, 等. “CH4-CO2”置换法开采天然气水合物[J]. 新能源进展, 2021, 9(1): 62-68.
WANG M, XU G, CAI J, et al. Research progress on the micro-mechanism and efficiency of CH4-CO2 replacement and extraction of CH4 hydrate [J]. Advances in New and Renewable Energy, 2021, 9(1): 62-68.
徐栋, 陈映赫, 韩旭波, 等. CO2置换开采海域天然气水合物联合技术展望[J]. 现代化工, 2021, 41(9): 22-26+32.
XU D, CHEN Y H, HAN X B, et al. Prospects on combined technology for CO2 replacement and exploitation of natural gas hydrate in sea [J]. Modern Chemical Industry, 2021, 41(9): 22-26+32.
袁青. 多孔介质中CH4水合物开采三维实验模拟研究[D]. 北京: 中国石油大学, 2012.
YUAN Q. Three-dimensional experimental simulation study of CH4 hydrate mining in porous media [D]. Beijing: China University of Petroleum, 2012.
王天. 海洋泥质粉砂天然气水合物CO2置换开采特性研究[D]. 大连: 大连理工大学, 2022.
WANG T. Study on the mining characteristics of natural gas hydrate CO2 [D]. Dalian: Dalian University of Technology, 2022.
TSYPKIN G G. Formation of hydrate in injection of liquid carbon dioxide into a reservoir saturated with methane andwater [J]. Fluid Dynamics, 2016, 51(5): 672-679.
BAI D, ZHANG X, CHEN G, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations [J]. Energy & Environmental Science, 2012, 5(5): 7033-7041.
KHASANOV M K, STOLPOVSKII M V. Mathematical model of injection of carbon dioxide into a gas-hydrate-bearing formation [J]. Theoretical Foundations of Chemical Engineering, 2021, 55: 699-710.
WANG T, SUN L J, FAN Z Y, et al. Promoting CH4/CO2 replacement from hydrate with warm brine injection for synergistic energy harvest and carbon sequestration [J]. Chemical Engineering Journal, 2023, 457: 141129.
LU H L, SEO Y T, LEE J W, et al. Complex gas hydrate from the Cascadia margin [J]. Nature, 2007, 445(7125): 303-306.
朱一铭, 王嘉君, 徐源鸿, 等. CH4和CO2的水合物沉积物力学特性对比研究[J]. 非常规油气, 2021, 8(5): 1-8.
ZHU Y M, WANG J J, XU Y H, et al. Comparative study on the mechanical properties of CH4 and CO2 hydrate-bearing sediments [J]. Unconventional Oil and Gas, 2021, 8(5): 1-8.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构