
浏览全部资源
扫码关注微信
1.宁夏大学 化学化工学院 省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏 银川 750021
2.国家能源集团 宁夏煤业有限责任公司煤炭化学工业技术研究院,宁夏 银川 750411
张曈(1998—),硕士研究生,研究方向为铁基催化剂,E-mail:12022130927@stu.nxu.edu.cn。
何育荣(1989—),博士,副教授,研究方向为费托合成催化剂结构和反应机理,E-mail:hyr@nxu.edu.cn。
纸质出版日期:2024-12-25,
收稿日期:2024-03-07,
修回日期:2024-04-29,
移动端阅览
张曈,何富贵,孔祥斌等.碱助剂改性铁基费托合成反应催化剂的研究进展[J].低碳化学与化工,2024,49(12):1-11.
ZHANG Tong,HE Fugui,KONG Xiangbin,et al.Research progress on alkali promoters modified iron-based catalysts for Fischer-Tropsch synthesis reaction[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):1-11.
张曈,何富贵,孔祥斌等.碱助剂改性铁基费托合成反应催化剂的研究进展[J].低碳化学与化工,2024,49(12):1-11. DOI: 10.12434/j.issn.2097-2547.20240090.
ZHANG Tong,HE Fugui,KONG Xiangbin,et al.Research progress on alkali promoters modified iron-based catalysts for Fischer-Tropsch synthesis reaction[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):1-11. DOI: 10.12434/j.issn.2097-2547.20240090.
由于费托合成反应复杂的反应机理和表征方法的限制,宏观实验结果与微观尺度变化的联系存在较大困难,需要理论计算为实验研究提供理论支撑。考虑到铁基催化剂在费托合成反应中的广泛应用,以及碱金属助剂(简称“碱助剂”)在铁基费托合成反应催化剂中的重要作用,对碱助剂改性铁基费托合成反应催化剂的研究进展进行了综述。首先总结了铁基费托合成反应催化剂的活性相,以及碳化过程中碱助剂在该催化剂表相和体相的迁移。然后分析了碱助剂对铁基费托合成反应催化剂结构的影响,介绍了碱助剂促进铁基催化剂的理论计算成果(催化剂结构设计、反应路径分布、反应物分子吸附和产物分布等),进而总结了碱助剂的作用机理。最后对未来相关领域的发展进行了展望。
Due to the complex reaction mechanisms of Fischer-Tropsch synthesis reaction and the limitation of characterization methods
it is difficult to connect the macroscopic experimental results with the microscale changes
so theoretical calculations are needed to provide theoretical support for experimental research. In view of the extensive application of iron-based catalysts in Fischer-Tropsch synthesis reaction and the important role of alkali metal promoters (“alkali promoters” for short) in iron-based catalysts for Fischer-Tropsch synthesis reaction
the research progress on alkali promoters modified iron-based catalysts for Fischer-Tropsch synthesis reaction was reviewed. At first
the active phases of iron-based catalysts for Fischer-Tropsch synthesis reaction and the migration of alkali promoters in the surface phase and bulk phase of the catalysts during carbonization were summarized. Then the effects of alkali promoters on the structures of iron-based catalysts for Fischer-Tropsch synthesis reaction was analyzed
and the theoretical calculation results of promoting effects of alkali promoters on iron-based catalysts for Fischer-Tropsch synthesis reaction (catalyst structure design
reaction path distribution
reactant molecular adsorption and product distribution
etc.) were introduced. Finally
the future development of related fields was prospected.
费托合成铁基催化剂碱助剂理论计算
Fischer-Tropsch synthesisiron-based catalystsalkali promoterstheoretical calculation
WEI J, GE Q J, YAO R W, et al. Directly converting CO2 into a gasoline fuel [J]. Nature Communications, 2017, 8(1): 15174.
HUO C F, LI Y W, WANG J, et al. Insight into CH4 formation in iron-catalyzed Fischer-Tropsch synthesis [J]. Journal of the American Chemical Society, 2009, 131(41): 14713-14721.
JAHANGIRI H, BENNETT J, MAHJOUBI P, et al. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas [J]. Catalysis Science & Technology, 2014, 4(8): 2210-2229.
TIAN X X, WANG T, YANG Y, et al. Copper promotion in CO adsorption and dissociation on the Fe(100) surface [J]. The Journal of Physical Chemistry C, 2014, 118(35): 20472-20480.
何育荣. 贵金属Pt对Fe5C2形貌及Fischer-Tropsch反应性能影响的研究[D]. 太原: 中国科学院大学, 2018.
HE Y R. Study on the effect of metal Pt on the morphology and Fischer-Tropsch reaction performance of Fe5C2 [D]. Taiyuan: University of Chinese Academy of Sciences, 2018.
PAN X L, JIAO F, MIAO D Y, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis [J]. Chemical Reviews, 2021, 121(11): 6588-6609.
LIU J X, WANG P, XU W, et al. Particle size and crystal phase effects in Fischer-Tropsch catalysts [J]. Engineering, 2017, 3(4): 467-476.
ANANTHARAJ S, KUNDU S, NODA S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts [J]. Nano Energy, 2021, 80: 105514.
GLASSER D, HILDEBRANDT D, LIU X Y, et al. Recent advances in understanding the Fischer-Tropsch synthesis (FTS) reaction [J]. Current Opinion in Chemical Engineering, 2012, 1(3): 296-302.
JOTHIMURUGESAN K, GOODWIN JR J G, GANGWAL S K, et al. Development of Fe Fischer-Tropsch catalysts for slurry bubble column reactors [J]. Catalysis Today, 2000, 58(4): 335-344.
JIN Y, DATYE A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature-programmed reduction [J]. Journal of Catalysis, 2000, 196(1): 8-17.
WANG T, TIAN X D, LI Y W, et al. High coverage CO activation mechanisms on Fe(100) from computations [J]. The Journal of Physical Chemistry C, 2014, 118(2): 1095-1101.
YANG T, GU T J, HAN Y, et al. Surface orientation and pressure dependence of CO2 activation on Cu surfaces [J]. The Journal of Physical Chemistry C, 2020, 124(50): 27511-27518.
BUKUR D B, MUKESH D, PATEL S A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research, 1990, 29(2): 194-204.
LEE J H, LEE H K, KIM K, et al. Unravelling the K-promotion effect in highly active and stable Fe5C2 nanoparticles for catalytic linear α-olefin production [J]. Materials Advances, 2021, 2(3): 1050-1058.
WANG M R, WANG P, ZHANG G H, et al. Stabilizing Co2C with H2O and K promoter for CO2 hydrogenation to C2+ hydrocarbons [J]. Science Advances, 2023, 9(24): e167.
LIU S L, QI L X, ZHANG Z, et al. Effect of K on carbon adsorption and deposition on the Co(111) surface [J]. International Journal of Quantum Chemistry, 2021, 121(24): e26812.
ZHANG C, LI S G, ZHONG L S, et al. Theoretical insights into morphologies of alkali-promoted cobalt carbide catalysts for Fischer-Tropsch synthesis [J]. The Journal of Physical Chemistry C, 2021, 125(11): 6061-6072.
PHAM T H, DUAN X Z, QIAN G, et al. CO activation pathways of Fischer-Tropsch synthesis on χ-Fe5C2(510): Direct versus hydrogen-assisted CO dissociation [J]. The Journal of Physical Chemistry C, 2014,118(19), 10170-10176.
PHAM T H, QI Y Y, YANG J, et al. Insights into Hägg iron-carbide-catalyzed Fischer-Tropsch synthesis: Suppression of CH4 formation and enhancement of C—C coupling on χ-Fe5C2(510) [J]. ACS Catalysis, 2015, 5(4): 2203-2208.
何富贵, 张曈, 梁洁, 等. DFT 计算在铁基催化剂费托合成反应研究中的应用[J]. 燃料化学学报(中英文), 2023, 51(11): 1540-1564.
HE F G, ZHANG T, LIANG J, et al. Application of DFT calculation in the study of iron-based catalyst for Fischer-Tropsch synthesis [J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1540-1564.
YIN J Q, LIU X C, LIU X W, et al. Theoretical exploration of intrinsic facet-dependent CH4 and C2 formation on Fe5C2 particle [J]. Applied Catalysis B: Environmental, 2020, 278: 119308.
ALAYAT A, MCLLROY D N, MCDONALD A G. Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis [J]. Fuel Processing Technology, 2018, 169: 132-141.
MANNIE G J A, LAMMICH L, LI Y W, et al. Monolayer iron carbide films on Au(111) as a Fischer-Tropsch model catalyst [J]. ACS Catalysis, 2014, 4(9): 3255-3260.
RAUPP G B, DELGASS W N. Mössbauer investigation of supported Fe and FeNi catalysts: II. Carbides formed Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1979, 58(3): 348-360.
AMELSE J A, BUTT J B, SCHWARTZ L H. Carburization of supported iron synthesis catalysts [J]. The Journal of Physical Chemistry, 1978, 82(5): 558-563.
HE Y R, ZHAO P, MENG Y, et al. Hunting the correlation between Fe5C2 surfaces and their activities on CO: The descriptor of bond valence [J]. The Journal of Physical Chemistry C, 2018, 122(5): 2806-2814.
BROOS R J P, ZIJLSTRA B, FILOT I A W, et al. Quantum-chemical DFT study of direct and H- and C-assisted CO dissociation on the χ-Fe5C2 Hagg carbide [J]. The Journal of Physical Chemistry C, 2018, 122(18): 9929-9938.
ZHAO S, LIU X W, HUO C F, et al. Surface morphology of Hägg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics [J]. Journal of Catalysis, 2012, 294: 47-53.
HE Y R, ZHAO P, YIN J Q, et al. CO direct versus H-assisted dissociation on hydrogen coadsorbed χ-Fe5C2 Fischer-Tropsch catalysts [J]. The Journal of Physical Chemistry C, 2018, 122(36): 20907-20917.
WANG H Z, NIE X W, LIU Y, et al. Mechanistic insight into hydrocarbon synthesis via CO2 hydrogenation on χ-Fe5C2 catalysts [J]. ACS Applied Materials & Interfaces, 2022, 14(33): 37637-37651.
DRY M E, FERREIRA L C. The distribution of promoters in magnetite catalysts [J]. Journal of Catalysis, 1967, 7(4): 352-358.
YANG Y, XIANG H W, XU Y Y. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis [J]. Applied Catalysis A: General, 2004, 266(2): 181-194.
PAAL Z, ERTL G, LEE S B. Interactions of potassium, oxygen and nitrogen with polycrystalline iron surfaces [J]. Applications of Surface Science, 1981, 8(3): 231-249.
DENG C M, HUO C F, BAO L L, et al. CO adsorption on Fe4C(100), (110), and (111) surfaces in Fischer-Tropsch synthesis [J]. The Journal of Physical Chemistry C, 2008, 112(48): 19018-19029.
LI J F, CHENG X F, ZHANG C H, et al. Alkalis in iron-based Fischer-Tropsch synthesis catalysts: Distribution, migration and promotion [J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1472-1480.
PARK J C, YEO S C, CHUN D H, et al. Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer-Tropsch synthesis [J]. Journal of Materials Chemistry A, 2014, 2(35): 14371-14379.
CHEN A, KAMINSKY M, GEOFFROY G L, et al. Carbon monoxide hydrogenation over carbon-supported iron-cobalt and potassium-iron-cobalt carbonyl cluster-derived catalysts [J]. The Journal of Physical Chemistry, 1986, 90(20): 4810-4819.
PENDYALA V R R, GRAHAM U M, JACOBS G, et al. Fischer-Tropsch synthesis: Morphology, phase transformation, and carbon-layer growth of iron-based catalysts [J]. ChemCatChem, 2014, 6(7): 1952-1960.
LI S Z, DING W P, MEITZNER G D, et al. Spectroscopic and transient kinetic studies of site requirements in iron-catalyzed Fischer-Tropsch synthesis [J]. The Journal of Physical Chemistry B, 2002, 106(1): 85-91.
ANDERSEN A, KATHMANN S M, LILGA M A, et al. Effects of potassium doping on CO hydrogenation over MoS2 catalysts: A first-principles investigation [J]. Catalysis Communications, 2014, 52: 92-97.
PETERSEN M A, CARIEM M J, CLAEYS M, et al. A DFT perspective of potassium promotion of χ-Fe5C2(100) [J]. Applied Catalysis A: General, 2015, 496: 64-72.
DRY M E, SHINGLES T, BOTHA C S H. Factors influencing the formation of carbon on iron Fischer-Tropsch catalysts: I. The influence of promoters [J]. Journal of Catalysis, 1970, 17(3): 341-346.
LIU X W, HUO C F, LI Y W, et al. Energetics of carbon deposition on Fe(100) and Fe(110) surfaces and subsurfaces [J]. Surface Science, 2012, 606(7/8): 733-739.
YANG T, WEN X D, LI Y W, et al. Interaction of alkali metals with the Fe3O4(111) Surface [J]. Surface Science, 2009, 603(1): 78-83.
HUO C F, WU B S, GAO P, et al. The mechanism of potassium promoter: Enhancing the stability of active surfaces [J]. Angewandte Chemie International Edition, 2011, 50(32): 7403-7406.
赵姝. 碱金属助剂对χ-Fe5C2微晶形貌调变及费托反应机理影响的量子化学研究[D]. 太原: 中国科学院大学, 2015.
ZHAO S. Quantum chemical study on the effect of alkali metal promoter on the morphology modulation and Fischer-Tropsch reaction mechanism of χ-Fe5C2 microcrystals [D]. Taiyuan: University of Chinese Academy of Sciences, 2015.
ZHAO S, LIU X W, HUO C F, et al. Morphology control of K2O promoter on Hägg carbide (χ-Fe5C2) under Fischer-Tropsch synthesis condition [J]. Catalysis Today, 2016, 261: 93-100.
YANG Y, ZHANG H T, MA H F, et al. Effect of alkalis (Li, Na, and K) on precipitated iron-based catalysts for high-temperature Fischer-Tropsch synthesis [J]. Fuel, 2022, 326: 125090.
WAN H J, WU B S, ZHANG C H, et al. Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer-Tropsch synthesis [J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 33-42.
CHANG H, LIN Q, CHENG M, et al. Effects of potassium loading over iron-silica interaction, phase evolution and catalytic behavior of precipitated iron-based catalysts for Fischer-Tropsch synthesis [J]. Catalysts, 2022, 12(8): 916.
XIONG H F, MOTCHELAHO M A, MOYO M, et al. Effect of Group I alkali metal promoters on Fe/CNT catalysts in Fischer-Tropsch synthesis [J]. Fuel, 2015, 150: 687-696.
CANO L A, BLANCO A A G, LENER G, et al. Effect of the support and promoters in Fischer-Tropsch synthesis using supported Fe catalysts [J]. Catalysis Today, 2017, 282: 204-213.
WU X, QIAN W X, MA H F, et al. Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer-Tropsch synthesis of light olefins [J]. Fuel, 2019, 257: 116101.
ZHANG C H, ZHAO G Y, LIU K K, et al. Adsorption and reaction of CO and hydrogen on iron-based Fischer-Tropsch synthesis catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2010, 328(1/2): 35-43.
ZHANG H J, MA H F, ZHANG H T, et al. Effects of Zr and K promoters on precipitated iron-based catalysts for Fischer-Tropsch synthesis [J]. Catalysis letters, 2012, 142: 131-137.
NIE X W, MENG L L, WANG H Z, et al. DFT insight into the effect of potassium on the adsorption, activation and dissociation of CO2 over Fe-based catalysts [J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14694-14707.
MAHYUDDIN M H, BELOSLUDOV R V, KHAZAEI M, et al. Effects of alkali adatoms on CO and H2S adsorptions on the Fe(100) surface: A density functional theory study [J]. The Journal of Physical Chemistry C, 2011, 115(48): 23893-23901.
WILKE S, COHEN M H. Influence of potassium adatoms on the dissociative adsorption of hydrogen on Pd(100) [J]. Surface Science, 1997, 380(1): L446-L454.
BOOYENS S, GILBERT L, WILLOCK D, et al. The adsorption of ethene on Fe(111) and surface carbide formation [J]. Catalysis Today, 2015, 244: 122-129.
ARAKAWA H, BELL A T. Effects of potassium promotion on the activity and selectivity of iron Fischer-Tropsch catalysts [J]. Industrial & Engineering Chemistry Process Design and Development, 1983, 22(1): 97-103.
HUO C F, REN J, LI Y W, et al. CO dissociation on clean and hydrogen pre-covered Fe(111) surfaces [J]. Journal of Catalysis, 2007, 249(2): 174-184.
GONG J H, CAO C, SUN R Q, et al. A DFT insight into the tuning effect of potassium promoter on the formation of carbon atoms via carburization gases dissociation on iron-based catalysts [J]. Catalysts, 2020, 10(5): 527.
LIU X Y, MA Z Y, GAO X H, et al. Water gas shift reaction activity on Fe(110): A DFT study [J]. Catalysts, 2021, 12(1): 27.
RAJE A P, O’BRIEN R J, DAVIS B H. Effect of potassium promotion on iron-based catalysts for Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1998, 180(1): 36-43.
SATTERFIELD C N, HANLON R T, TUNG S E, et al. Initial behavior of a reduced fused-magnetite catalyst in the Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Product Research and Development, 1986, 25(3): 401-407.
PENDYALA V R R, JACOBS G, MOHANDAS J C. Fischer-Tropsch synthesis: Attempt to tune FTS and WGS by alkali promoting of iron catalysts [J]. Applied Catalysis A: General, 2010, 389(1/2): 131-139.
WEI J, YAO R W, GE Q, et al. Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts [J]. ACS Catalysis, 2018, 8(11): 9958-9967.
LIU Z P, HU P. An insight into alkali promotion: A density functional theory study of CO dissociation on K/Ru(111) [J]. Journal of the American Chemical Society, 2001, 123(50): 12596-12604.
SORESCU D C. Adsorption and activation of CO coadsorbed with K on Fe(100) surface: A plane-wave DFT study [J]. Surface Science, 2011, 605(3/4): 401-414.
CROWELL J E, GARFUNKEL E L, SOMORJAI G A. The coadsorption of potassium and CO on the Pt(111) crystal surface: A TDS, HREELS and UPS study [J]. Surface Science, 1982, 121(2): 303-320.
ZHAO Q, HAN X X, LIANG H T, et al. Activating nitrogen-doped carbon nanosheets by KOH treatment to promote the Fischer-Tropsch synthesis performance [J]. Chemical Engineering Journal, 2023, 455: 140810.
YAHYAZADEH A, BORUGADDA V B, DALAI A K, et al. Optimization of olefins’ yield in Fischer-Tropsch synthesis using carbon nanotubes supported iron catalyst with potassium and molybdenum promoters [J]. Applied Catalysis A: General, 2022, 643: 118759.
CHEN Y P, MA L X, ZHANG R G, et al. Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis [J]. Applied Catalysis B: Environmental, 2022, 312: 121393.
ZHAO S, LIU X W, HUO C F, et al. Potassium promotion on CO hydrogenation on the χ-Fe5C2(111) surface with carbon vacancy [J]. Applied Catalysis A: General, 2017, 534: 22-29.
DRY M E, SHINGLES T, BOSHOFF L J, et al. Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1969, 15(2): 190-199.
ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst [J]. Angewandte Chemie International Edition, 2016, 128(34): 10056-10061.
KIZILKAYA A C, NIEMANTSVERDRIET J W, WESTSTRATE C J. Oxygen adsorption and water formation on Co(0001) [J]. The Journal of Physical Chemistry C, 2016, 120(9): 4833-4842.
ZHANG Z Z, CHEN B J, JIA L Y, et al. Unraveling the role of Fe5C2 in CH4 formation during CO2 hydrogenation over hydrophobic iron catalysts [J]. Applied Catalysis B: Environmental, 2023, 327: 122449.
HE Y R, ZHAO P, LIU J J, et al. Suppression by Pt of CO adsorption and dissociation and methane formation on Fe5C2(100) surfaces [J]. Physical Chemistry Chemical Physics, 2018, 20(39): 25246-25255.
DRY M E, OOSTHUIZEN G J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1968, 11(1): 18-24.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构