
浏览全部资源
扫码关注微信
1.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
2.太原理工大学 安全与应急管理工程学院,山西 太原 030024
3.山西焦煤集团有限责任公司,山西 太原 030024
段姗姗(1992—),博士研究生,研究方向为CH4-CO2重整,E-mail:shshanduan@163.com。
吕永康(1961—),博士,教授,研究方向为多相催化及水处理,E-mail:yongkanglv@163.com;
王 荀(1984—),博士,讲师,研究方向为生物质催化转化及多相催化,E-mail:wangxun@tyut.edu.cn。
纸质出版日期:2024-12-25,
收稿日期:2024-03-04,
修回日期:2024-03-22,
移动端阅览
段姗姗,吕永康,王荀等.W负载量对Ni-W双金属催化剂催化CH4-CO2重整反应性能的影响[J].低碳化学与化工,2024,49(12):12-18.
DUAN Shanshan,LV Yongkang,WANG Xun,et al.Effects of W loading amounts on catalytic performances of Ni-W bimetallic catalysts for CH4-CO2 reforming reaction[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):12-18.
段姗姗,吕永康,王荀等.W负载量对Ni-W双金属催化剂催化CH4-CO2重整反应性能的影响[J].低碳化学与化工,2024,49(12):12-18. DOI: 10.12434/j.issn.2097-2547.20240083.
DUAN Shanshan,LV Yongkang,WANG Xun,et al.Effects of W loading amounts on catalytic performances of Ni-W bimetallic catalysts for CH4-CO2 reforming reaction[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):12-18. DOI: 10.12434/j.issn.2097-2547.20240083.
CH
4
-CO
2
重整反应是一种可实现CO
2
资源化利用的途径。CH
4
-CO
2
重整反应过程中催化剂的烧结和积炭是制约其工业化应用的主要因素。采用固态研磨法合成了一系列Ni-W双金属催化剂,通过BET、XRD、H
2
-TPR、H
2
-TPD、XPS、TG-DTA和Raman分析了催化剂的织构性质、物相组成、活性位点数和积炭,评价了不同W负载量(质量分数,下同)对催化剂催化性能和抗积炭性能的影响。与单金属Ni催化剂相比,W的引入显著减小了活性组分的晶粒尺寸。但在Ni-W双金属催化剂中,随着W负载量的增大,活性组分的晶粒尺寸增大,活性位点数明显减少。其中,Ni2W/SBA-15的初始活性最高,在700 ℃、30000 mL/(g·h)时,CH
4
和CO
2
转化率分别为58%和66%。TG-DTA结果表明,Ni6W/SBA-15产生的积炭量最少,反应进行1450 min后,积炭量为3.67%。
CH
4
-CO
2
reforming reaction is a technology for achieving CO
2
resource utilization. During CH
4
-CO
2
reforming reaction process
the sintering and carbon deposition of catalysts are the main factors restricting their industrialization. A series of Ni-W bimetallic catalysts were synthesized using the solid-state grinding method. The texture properties
phase compositions
number of active sites
and carbon deposition of the catalysts were analyzed by BET
XRD
H
2
-TPR
H
2
-TPD
XPS
TG-DTA and Raman. The effects of different W loading amounts (mass fraction) on catalytic performances and anti-carbon deposition performances of catalysts were evaluated. Compared with monometallic Ni-based catalysts
the introduction of W significantly reduces the particle size of the active component. However
with the increase of W loading
the particle size of the active component increases and the number of active sites significantly decreases in Ni-W bimetallic catalysts. Among them
the initial activity of the Ni2W/SBA-15 is the highest. At 700 ℃ and 30000 mL/(g·h)
the conversion rates of CH
4
and CO
2
are 58% and 66%
respectively. The TG-DTA results show that the Ni6W/SBA-15 produces the least amount of carbon deposition
which is 3.67% after 1450 min.
CH4-CO2重整双金属催化剂抗积炭性能W负载量
CH4-CO2 reformingbimetallic catalystsanti-carbon deposition performanceW loading amounts
SETIABUDI H D, AZIZ M A A, ABDULLAH S, et al. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review [J]. International Journal of Hydrogen Energy, 2020, 45(36): 18376-18397.
DE VASCONCELOS B R, MINH D P, LYCZKO N, et al. Upgrading greenhouse gases (methane and carbon dioxide) into syngas using nickel-based catalysts [J]. Fuel, 2018, 226: 195-203.
TRAN N T, PHAM T L M, NGUYEN T D, et al. Improvements in hydrogen production from methane dry reforming on filament-shaped mesoporous alumina-supported cobalt nanocatalyst [J]. International Journal of Hydrogen Energy, 2020, 46(48): 24781-24790.
TANG L, HUANG X, RAN J Y, et al. Density functional theory studies on direct and oxygen assisted activation of C—H bond for dry reforming of methane over Rh-Ni catalyst [J]. International Journal of Hydrogen Energy, 2022, 47(71): 30391-30403.
WANG C Z, SUN N N, ZHAO N, et al. Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions [J]. Fuel, 2015, 143: 527-535.
FENG F, SONG G H, XIAO J, et al. Carbon deposition on Ni-based catalyst with TiO2 as additive during the syngas methanation process in a fluidized bed reactor [J]. Fuel, 2019, 235: 85-91.
XIE T, SHI L Y, ZHANG J P, et al. Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane [J]. Chemical Communications, 2014, 50(55): 7250-7253.
AL FATESH A S, FAKEEHA A H, IBRAHIM A A, et al. Ni supported on La2O3 + ZrO2 for dry reforming of methane: The impact of surface adsorbed oxygen species [J]. International Journal of Hydrogen Energy, 2021, 46(5): 3780-3788.
LIU J, ZHANG Y, LIANG Z J, et al. Enhancing the dry reforming of methane over Ni-Co-Y/WC-AC catalyst: Influence of the different Ni/Co ratio on the catalytic performance [J]. Fuel, 2023, 335: 1-9.
SHI C, ZHANG A J, LI X S, et al. Ni-modified Mo2C catalysts for methane dry reforming [J]. Applied Catalysis A: General, 2012, 431(432): 164-170.
SHI C, ZHANG S H, LI X S, et al. Synergism in NiMoOx precursors essential for CH4/CO2 dry reforming [J]. Catalysis Today, 2014, 233: 46-52.
YAO Z W, JIANG J, ZHAO Y, et al. Insights into the deactivation mechanism of metal carbide catalysts for dry reforming of methane via comparison of nickel-modified molybdenum and tungsten carbides [J]. RSC Advances, 2016, 6(24): 19944-19951.
BARBOSA R D, BALDANZA M A S, DE-RESENDE N S, et al. Nickel-promoted molybdenum or tungsten carbides as catalysts in dry reforming of methane: Effects of variation in CH4/CO2 molar ratio [J]. Catalysis Letters, 2020, 151(6): 1578-1591.
CLARIDGE J B, YORK A P E, BRUNGS A J, et al. New catalysts for the conversion of methane to synthesis gas: Molybdenum and tungsten carbide [J]. Journal of Catalysis, 1998, 180(1): 85-100.
DARUJATI A R S, LAMONT D C, THOMSON W J. Oxidation stability of Mo2C catalysts under fuel reforming conditions [J]. Applied Catalysis A: General, 2003, 253(2): 397-407.
VROULIAS D, GKOULEMANI N, PAPADOPOULOU C, et al. W-modified Ni/Al2O3 catalysts for the dry reforming of methane: Effect of W loading [J]. Catalysis Today, 2020, 355: 704-715.
YUSUF M, FAROOQI A S, AL KAHTANI A A, et al. Syngas production from greenhouse gases using Ni-W bimetallic catalyst via dry methane reforming: Effect of W addition [J]. International Journal of Hydrogen Energy, 2021, 46(53): 27044-27061.
OSAZUWA O U, ABIDIN S Z, FAN X L, et al. An insight into the effects of synthesis methods on catalysts properties for methane reforming [J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105052.
DUAN S S, WANG X, REN R P, et al. Effects of preparation methods on the size and interface of Ni-W bimetallic catalysts for dry reforming of methane [J]. International Journal of Hydrogen Energy, 2024, 54: 1469-1477.
WU Z W, XIONG J, WANG C W, et al. Supporting high-loading Ni on SBA-15 as highly active and durable catalyst for ammonia decomposition reaction [J]. International Journal of Hydrogen Energy, 2023, 48(12): 4728-4737.
GUERRERO-CABALLERO J, KANE T, HAIDAR N, et al. Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane [J]. Catalysis Today, 2019, 333: 251-258.
LIMA N A, ALENCAR L D S, SIU-LI M, et al. NiWO4 powders prepared via polymeric precursor method for application as ceramic luminescent pigments [J]. Journal of Advanced Ceramics, 2020, 9(1): 55-63.
ZAWAWI S M M, YAHYA R, HASSAN A, et al. Structural and optical characterization of metal tungstates (MWO4; M = Ni, Ba, Bi) synthesized by a sucrose-templated method [J]. Chemistry Central Journal, 2013, 7(1): 80.
TIAN J J, XUE Y, YU X P, et al. Solvothermal synthesis of NiWO4 nanostructure and its application as a cathode material for asymmetric supercapacitors [J]. RSC Advances, 2018, 8(73): 41740-41748.
GUO Y, LI Y F, NING Y X, et al. CO2 reforming of methane over a highly dispersed Ni/Mg-Al-O catalyst prepared by a facile and green method [J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15506-15514.
HU L J, URAKAWA A. Continuous CO2 capture and reduction in one process: CO2 methanation over unpromoted and promoted Ni/ZrO2 [J]. Journal of CO2 Utilization, 2018, 25: 323-329.
PAN Q S, PENG J X, SUN T J, et al. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites [J]. Catalysis Communications, 2014, 45: 74-78.
CHEN S, MIAO C X, LUO Y, et al. Study of catalytic hydrodeoxygenation performance of Ni catalysts: Effects of prepared method [J]. Renewable Energy, 2017, 115: 1109-1117.
DAN M, MIHET M, BORODI G, et al. Combined steam and dry reforming of methane for syngas production from biogas using bimodal pore catalysts [J]. Catalysis Today, 2021, 366: 87-96.
LYU L H, SHENGENE M, MA Q X, et al. Synergy of macro-meso bimodal pore and Ni-Co alloy for enhanced stability in dry reforming of methane [J]. Fuel, 2022, 310: 122375.
CHEN C S, LIN J H, YOU J H, et al. Effects of potassium on Ni-K/Al2O3 catalysts in the synthesis of carbon nanofibers by catalytic hydrogenation of CO2 [J]. The Journal of Physical Chemistry A, 2010, 114(11): 3773-3781.
潘伟, 孟俊光, 张居兵, 等. Ni/氮掺杂碳催化剂的制备及其催化甲烷干重整实验研究[J]. 天然气化工—C1化学与化工, 2022, 47(2): 46-53.
PAN W, MENG J G, ZHANG J B, et al. Preparation of Ni/nitrogen-doped carbon catalysts and their experimental study on dry reforming of methane [J]. Natural Gas Chemical Industry, 2022, 47(2): 46-53.
ZHANG Q L, LONG K X, WANG J, et al. A novel promoting effect of chelating ligand on the dispersion of Ni species over Ni/SBA-15 catalyst for dry reforming of methane [J]. International Journal of Hydrogen Energy, 2017, 42(20): 14103-14114.
LIANG Z J, ZHANG Y, ZHANG G J, et al. Promotion effect of different lanthanide doping on Co/Al2O3 catalyst for dry reforming of methane [J]. International Journal of Hydrogen Energy, 2023, 48(49): 18644-18656.
LI S, WANG J M, ZHANG G J, et al. Highly stable activity of cobalt based catalysts with tungsten carbide-activated carbon support for dry reforming of methane: Role of tungsten carbide [J]. Fuel, 2021, 311: 122512.1-11.
WANG J M, ZHANG G J, LI G Q, et al. Understanding structure-activity relationships of the highly active and stable La promoted Co/WC-AC catalyst for methane dry reforming [J]. International Journal of Hydrogen Energy, 2022, 47(12): 7823-7835.
WANG C S, WANG Y S, CHEN M Q, et al. Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming [J]. Energy, 2021, 214: 118971.
任永旺, 王一泽, 常飞祥, 等. 氮掺杂碳改性Ni/Al2O3催化剂的甲烷干重整反应性能研究[J]. 低碳化学与化工, 2023, 48(3): 49-55.
REN Y W, WANG Y Z, CHANG F X, et al. Performance study of nitrogen-doped carbon-modified Ni/Al2O3 catalysts for methane dry reforming reaction [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 49-55.
MIKLOS N, ZOLTAN S, DAVID S, et al. Impregnated Ni/ZrO2 and Pt/ZrO2 catalysts in dry reforming of methane: Activity tests in excess methane and mechanistic studies with labeled 13CO2 [J]. Applied Catalysis A: General, 2015, 504: 608-620.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构