
浏览全部资源
扫码关注微信
1.太原理工大学 化学工程与技术学院,山西 太原 030024
2.上海电气国控环球工程有限公司, 山西 太原 030024
3.清创人和生态工程技术有限公司,山西 太原 030031
闫妍琼(1998—),硕士研究生,研究方向为C1化学与多相催化,E-mail:1952489484@qq.com。
丁传敏(1986—),博士,副教授,硕士研究生导师,研究方向为C1化学与多相催化,E-mail:dingchuanmin@tyut.edu.cn。
纸质出版日期:2024-12-25,
收稿日期:2024-03-03,
修回日期:2024-03-28,
移动端阅览
闫妍琼,王晓斌,陈海洁等.强氧还原性氮化硼的制备及其催化甲烷部分氧化反应性能[J].低碳化学与化工,2024,49(12):27-32.
YAN Yanqiong,WANG Xiaobin,CHEN Haijie,et al.Preparation of strongly oxygen reduction boron nitride and its catalytic performance for partial oxidation of methane[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):27-32.
闫妍琼,王晓斌,陈海洁等.强氧还原性氮化硼的制备及其催化甲烷部分氧化反应性能[J].低碳化学与化工,2024,49(12):27-32. DOI: 10.12434/j.issn.2097-2547.20240081.
YAN Yanqiong,WANG Xiaobin,CHEN Haijie,et al.Preparation of strongly oxygen reduction boron nitride and its catalytic performance for partial oxidation of methane[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):27-32. DOI: 10.12434/j.issn.2097-2547.20240081.
氮化硼(BN)作为一种新兴的二维无机材料,近年来在烷烃氧化脱氢方面得到了广泛的应用,目前有研究表明氧物种的引入可以使BN具有更好的催化性能。采用以硼酸为硼源、尿素为氮源直接共融的合成方法制备了含氧BN催化剂(
n
(硼酸):
n
(尿素) = 1:1、1:2、1:3和1:4),探究了在温度400~700 ℃、空速14400 mL/(g·h)和
V
(CH
4
):
V
(O
2
) = 2:1的反应条件下,催化剂在甲烷部分氧化(POM)反应中的催化性能。采用FT-IR、ICP-OES、XRD和循环伏安(CV)等测试方法对催化剂的含氧官能团、元素含量(质量分数)、晶相结构和氧还原性能等进行了表征。结果表明,在POM反应中,
n
(硼酸):
n
(尿素) = 1:2条件下制得的催化剂(BN-1:2)表现出最佳的催化性能(CH
4
转化率43%,CO选择性72%,H
2
选择性17%)。与其他3种催化剂相比,BN-1:2具有最高的结晶度,使其与O
2
的相互作用更强,促进O
2
活化,而且BN-1:2在CV测试中具有最大的电流密度(3.4889 × 10
-4
A/cm
2
),说明其具有最强的氧还原性能,可促进活性位点形成,从而表现出更好的催化性能。
As an emerging two-dimensional inorganic material
boron nitride (BN) has been widely used in the oxidative dehydrogenation of alkanes in recent years
and it is now shown that the introduction of oxygen species makes the BN have a better catalytic performance. The oxygenated BN catalysts (
n
(boric acid):
n
(urea) = 1:1
1:2
1:3 and 1:4) were prepared by direct co-fusion synthesis using boric acid as the boron source and urea as the nitrogen source. Under the conditions of temperature from 400 to 700 ℃
space velocity 14400 mL/(g·h) and
V
(CH
4
):
V
(O
2
) = 2:1
the catalytic performances of the catalysts for partial oxidation of methane (POM) r
eaction were investigated. The oxygen-containing functional groups
elemental contents (mass fraction)
crystalline structures and oxygen reduction abilities of the catalysts were characterized by FT-IR
ICP-OES
XRD and cyclic voltammetry (CV). The results show that in POM reaction
the catalyst (BN-1:2) under the condition of
n
(boric acid):
n
(urea) = 1:2 exhibites the best catalytic performance (CH
4
conversion rate of 43%
CO selectivity of 72% and H
2
selectivity of 17%). Compared with the other three catalysts
BN-1:2 has the highest crystallinity
which makes the interaction between BN-1:2 and O
2
stronger and promotes O
2
activation. BN-1:2 has the highest current density in CV tests
indicating that it has the strongest oxygen reduction capability (3.4889 × 10
-4
A/cm
2
)
which promotes active site formation and thus exhibits better catalytic performance.
氮化硼甲烷部分氧化氧还原性能催化剂
boron nitridepartial oxidation of methaneoxygen reduction capabilitycatalysts
杨美如. 羟基化和掺杂金属氧化物改性六方氮化硼的制备及其用于甲烷部分氧化的研究[D]. 太原: 太原理工大学, 2022.
YANG M R. Preparation of hexagonal boron nitride modified by hydroxylation and doping metal oxides and its application in partial oxidation of methane [D]. Taiyuan: Taiyuan University of Technology, 2022.
ZHENG K, WU Y, ZHU J C, et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets [J]. Journal of the American Chemical Society, 2022, 144(27): 12357-12366.
WANG B. Advances in methane conversion processes [J]. Catalysis Today, 2017, 285: 147-158.
SHENG J, LI W C, HE B, et al. Surface borate-derived highly dispersed and stable metal nanoparticles on nitrogen-vacancy boron nitride support promoting CO methanation [J]. ACS Catalysis, 2023, 13(13): 9201-9212.
YANG F H, SUN X P, YAO Z H. Thionyl chloride corrodes hexagonal boron nitride to generate reactive functional groups [J]. Langmuir, 2021, 37(21): 6442-6450.
GRANT J T, CARRERO C A, GOELTL F, et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts [J]. Science, 2016, 354(6319): 1570-1573.
SHI L, WANG D Q, SONG W, et al. Edge‐hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene [J]. ChemCatChem, 2017, 9(10): 1788-1793.
YANG M R, LV Y, WANG J, et al. Increased hydroxyl concentration by tungsten oxide modified h-BN promoted catalytic performance in partial oxidation of methane [J]. International Journal of Hydrogen Energy, 2022, 47(63): 27023-27031.
ZHOU Y L, LIN J, LI L, et al. Enhanced performance of boron nitride catalysts with induction period for the oxidative dehydrogenation of ethane to ethylene [J]. Journal of Catalysis, 2018, 365: 14-23.
WANG Y, ZHAO L Y, SHI L, et al. Methane activation over a boron nitride catalyst driven by in situ formed molecular water [J]. Catalysis Science & Technology, 2018, 8(8): 2051-2055.
LOVE A M, THOMAS B, SPECHT S E, et al. Probing the transformation of boron nitride catalysts under oxidative dehydrogenation conditions [J]. Journal of the American Chemical Society, 2018, 141(1): 182-190.
KUMAR S, LYALIN A, HUANG Z G, et al. Catalytic oxidative dehydrogenation of light alkanes over oxygen functionalized hexagonal boron nitride [J]. Chemistryselect, 2022, 7(1): e202103795.
陈加森, 唐竹兴. h-BN的制备与表征[J]. 山东理工大学学报(自然科学版), 2015, 29(2): 44-47.
CHEN J S, TANG Z X. Preparation and characterization of h-BN [J]. Journal of Shandong University of Technology: Natural Science Edition, 2015,29(02): 44-47.
YAO J K, XU Y J, YANG H, et al. Identifying the metallic state of Rh catalyst on boron nitride during partial oxidation of methane by using the product molecule as the infrared probe [J]. Catalysts, 2022, 12(10): 1146.
CHATURBEDY P, AHAMED M, ESWARAMOORTHY M. Oxidative dehydrogenation of propane over a high surface area boron nitride catalyst: Exceptional selectivity for olefins at high conversion [J]. ACS Omega, 2018, 3(1): 369-374.
GAUTAM C, YADAV A K, SINGH A K. A review on infrared spectroscopy of borate glasses with effects of different additives [J]. ISRN Ceramics, 2012, (5): 1-17.
MAIER J, NÖTH A. Wet-chemical coating of silicon carbide fibers with hexagonal boron nitride layers [J]. Journal of the European Ceramic Society, 2021, 41(13): 6207-6212.
FENG C Y, TANG L, DENG Y C, et al. Enhancing optical absorption and charge transfer: Synthesis of S-doped h-BN with tunable band structures for metal-free visible-light-driven photocatalysis [J]. Applied Catalysis B: Environmental, 2019, 256: 117827.
NAKAMURA S, TAKAGAKI A, WATANABE M, et al. Porous boron nitride as a weak solid base catalyst [J]. ChemCatChem, 2020, 12(23): 6033-6039.
WANG T C, YIN J L, GUO X J, et al. Modulating the crystallinity of boron nitride for propane oxidative dehydrogenation [J]. Journal of Catalysis, 2021, 393: 149-158.
ZHOU M, YANG P J, YUAN R S, et al. Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols [J]. ChemSusChem, 2017, 10(22): 4451-4456.
戴莉. 缺陷型多孔六方氮化硼的构筑及其催化氧化燃油脱硫研究[D]. 镇江: 江苏大学, 2021.
DAI L. Construction of defective and porous hexagonal boron nitride and their application on catalytic oxidation desulfurization of fuel [D]. Zhenjiang: Jiangsu University, 2021.
ZHANG R, YANG X, TAO Z, et al. Insight into the effective aerobic oxidative cross-esterification of alcohols over Au/porous boron nitride catalyst [J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46678-46687.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构