

浏览全部资源
扫码关注微信
1.太原工业学院 化学与化工系 生物质绿色甲醇转化及氢能利用厅市共建山西省重点实验室培育基地,山西 太原 030008
2.中国科学院 山西煤炭化学研究所 煤炭高效低碳利用全国重点实验室,山西 太原 030001
Received:22 July 2025,
Revised:2025-08-20,
Published:25 November 2025
移动端阅览
高晓庆,朱善辉,郑洪岩.Ru@ZSM-5催化纤维素和甲醇耦合转化制γ-戊内酯[J].低碳化学与化工,2025,50(11):52-63.
GAO Xiaoqing,ZHU Shanhui,ZHENG Hongyan.Integrated conversion of cellulose and methanol to γ‑valerolactone catalyzed by Ru@ZSM-5[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):52-63.
高晓庆,朱善辉,郑洪岩.Ru@ZSM-5催化纤维素和甲醇耦合转化制γ-戊内酯[J].低碳化学与化工,2025,50(11):52-63. DOI: 10.12434/j.issn.2097-2547.20250305.
GAO Xiaoqing,ZHU Shanhui,ZHENG Hongyan.Integrated conversion of cellulose and methanol to γ‑valerolactone catalyzed by Ru@ZSM-5[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):52-63. DOI: 10.12434/j.issn.2097-2547.20250305.
γ
-戊内酯(GVL)是重要的生物质衍生物,由纤维素的“水解-加氢”路线生产,然而现阶段主要使用液体酸和负载金属混合催化剂,具有GVL收率低等问题。因此,提出了纤维素和甲醇的“醇解-加氢”新路线,利用“配体保护策略”原位水热法设计了具有金属和酸双功能活性位的ZSM-5分子筛孔道限域Ru基催化剂(Ru@ZSM-5),将Ru团簇包覆在ZSM-5分子筛孔道内。TEM表征和封装度测试证实Ru团簇平均粒径仅为0.57 nm,大量Ru团簇(92.7%)被限域在ZSM-5分子筛的十元环交叉孔道内。结果表明,Ru@ZSM-5在纤维素和甲醇耦合转化制
γ
-戊内酯中表现出优异的催化性能,在230 ℃、3 MPa H
2
和水与甲醇体积比为10%条件下,GVL收率高达51.1%(反应6 h),远优于传统负载型Ru/ZSM-5、Ru/SiO
2
+ ZSM-5和Ru/Al
2
O
3
+ ZSM-5催化剂。由于ZSM-5分子筛孔道的限域效应,Ru@ZSM-5具有非常高的稳定性,5次循环反应后GVL收率为51.5%,且Ru团簇平均粒径仍保持在0.59 nm。然而,Ru/ZSM-5经历了严重的失活,分散在ZSM-5分子筛外表面的Ru纳米粒子发生明显烧结,其平均粒径为6.57 nm。
γ
-valerolactone (GVL) is an important biomass derivative
which is produced by “hydrolysis-hydrogenation” route of cellulose. However
at present
liquid acid and suppo
rted metal mixed catalysts are mainly used
which have the problem of low GVL yield. Therefore
a new route of “alcoholysis-hydrogenation” of cellulose and methanol was proposed. ZSM-5 molecular sieve pore confined Ru catalyst (Ru@ZSM-5) was designed with dual functional active sites of metal and acid by “ligand protection strategy” in-situ hydrothermal method
and Ru nanoclusters were encapsulated within the pore channels of ZSM-5 molecular sieve. TEM characterization and encapsulation degree test confirm that the average diameter of Ru clusters is only 0.57 nm
and a large number of Ru clusters (92.7%) are confined within the ten-membered ring cross pore channels of ZSM-5 molecular sieve. The results show that Ru@ZSM-5 exhibits excellent catalytic performance in the integrated conversion of cellulose and methanol to
γ
‑valerolactone. Under the conditions of 230 °C
3 MPa H
2
and volume ratio of water to methanol of 10%
the GVL yield is 51.1% (reaction for six hours)
far superior to traditional supported Ru/ZSM-5
Ru/SiO
2
+ ZSM-5
and Ru/Al
2
O
3
+ ZSM-5 catalysts. Due to the confinement effect of ZSM-5 molecular sieve pores
Ru@ZSM-5 shows high stability
with the GVL yield of 51.5% and the particle size of Ru clusters remains 0.59 nm after five reaction cycles. However
Ru/ZSM-5 undergoes severe deactivation
and the Ru nanoparticles dispersed on the outer surface of ZSM-5 molecular sieve suffer from significant sintering
with the average particle size of 6.57 nm.
LI C Z , ZHAO X C , WANG A Q , et al . Catalytic transformation of lignin for the production of chemicals and fuels [J ] . Chemical Reviews , 2015 , 115 ( 21 ): 11559 - 11624 .
LIN L F , HAN X , HAN B X , et al . Emerging heterogeneous catalysts for biomass conversion: Studies of the reaction mechanism [J ] . Chemical Society Reviews , 2021 , 50 ( 20 ): 11270 - 11292 .
高晓庆 , 郑洪岩 , 薛彦峰 , 等 . 乙酰丙酸加氢制备 γ -戊内酯催化剂研究进展 [J ] . 低碳化学与化工 , 2024 , 49 ( 2 ): 35 - 48 .
GAO X Q , ZHENG H Y , XUE Y F , et al . Research progress of catalyst for levulinic acid hydrogenation to γ ‑valerolactone [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 2 ): 35 - 48 .
JING Y X , GUO Y , XIA Q N , et al . Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass [J ] . Chem , 2019 , 5 ( 10 ): 2520 - 2546 .
MARISCAL R , MAIRELES-TORRES P , OJEDA M , et al . Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels [J ] . Energy & Environmental Science , 2016 , 9 ( 4 ): 1144 - 1189 .
NEHA K , RIZKY G K , JAEYONG P , et al . One-pot, cascade conversion of cellulose to γ -valerolactone over a multifunctional Ru-Cu/zeolite-Y catalyst in supercritical methanol [J ] . Applied Catalysis B: Environmental , 2022 , 314 : 121466 .
BOND J Q , ALONSO D M , WANG D , et al . Integrated catalytic conversion of γ -valerolactone to liquid alkenes for transportation fuels [J ] . Science , 2010 , 327 ( 5969 ): 1110 - 1114 .
LUTERBACHER J S , RAND J M , ALONSO D M , et al . Nonenzymatic sugar production from biomass using biomass-derived γ -valerolactone [J ] . Science , 2014 , 343 ( 6168 ): 277 - 280 .
WĄCHAŁA M , GRAMS J , KWAPIŃSKI W , et al . Influence of ZrO 2 on catalytic performance of Ru catalyst in hydrolytic hydrogenation of cellulose towards γ -valerolactone [J ] . International Journal of Hydrogen Energy , 2016 , 41 ( 20 ): 8688 - 8695 .
HEERES H , HANDANA R , CHUNAI D , et al . Combined dehydration/(transfer)-hydrogenation of C 6 -sugars (D-glucose and D-fructose) to γ -valerolactone using ruthenium catalysts [J ] . Green Chemistry , 2009 , 11 ( 8 ): 1247 - 1255 .
CUI J L , TAN J J , DENG T S , et al . Conversion of carbohydrates to furfural via selective cleavage of the carbon-carbon bond: The cooperative effects of zeolite and solvent [J ] . Green Chemistry , 2015 , 17 ( 6 ): 3084 - 3089 .
DING , D Q , XI , J X , WANG , J J , et al . Production of methyl levulinate from cellulose: Selectivity and mechanism study [J ] . Green Chemistry , 2015 , 17 ( 7 ): 4037 - 4044 .
ZHOU S Q , YANG X M , ZHANG Y L , et al . Efficient conversion of cellulose to methyl levulinate over heteropoly acid promoted by Sn-Beta zeolite [J ] . Cellulose , 2019 , 26 : 9135 - 9147 .
XIANG M , LIU J , FU W Q , et al . Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 zeolite [J ] . ACS Sustainable Chemistry & Engineering 2017 , 5 ( 7 ): 5800 - 5809 .
WANG Y S , SHI J J , CHEN X S , et al . Ethyl levulinate production from cellulose conversion in ethanol medium over high-efficiency heteropoly acids [J ] . Fuel , 2022 , 324 : 124642 .
CHANG C , WANG S J , GUO P K , et al . Metal sulfate-catalyzed methanolysis of cellulose at high solid loadings: Heterogeneous degradation kinetics and levulinate synthesis [J ] . Chemical Engineering Journal , 2023 , 453 : 139873 .
HUANG Y B , YANG T , LIN Y T , et al . Facile and high-yield synthesis of methyl levulinate from cellulose [J ] . Green Chemistry , 2018 , 20 ( 6 ): 1323 - 1334 .
LIU H , CHEN X L , ZHANG Y X , et al . Alcoholysis of ball-milled corn stover: The enhanced conversion of carbohydrates into biobased chemicals over combination catalysts of [Bmim-SO 3 H ] [HSO 4 ] and Al 2 (SO 4 ) 3 [J ] . Energy & Fuels , 2020 , 34 ( 6 ): 7085 - 7093 .
PANAGIOTOPOULOU P , VLACHOS D G . Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst [J ] . Applied Catalysis A , General, 2014 , 480 : 17 - 24 .
JAE J , ZHENG W Q , KARIM A M , et al . The Role of Ru and RuO 2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran [J ] . ChemCatChem 2014 , 6 ( 3 ): 848 - 856 .
GAO X Q , ZHU S H , DONG M , et al . Ru/CeO 2 catalyst with optimized CeO 2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ -valerolactone [J ] . Journal of Catalysis , 2020 , 389 : 60 - 70 .
WANG N , SUN Q M , BAI R S , et al . In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation [J ] . Journal of the American Chemistry Society , 2016 , 138 ( 24 ): 7484 - 7487 .
LIU Y W , LI Z , YU Q Y , et al . A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite [J ] . Journal of the American Chemistry Society , 2019 , 141 ( 23 ): 9305 - 9311 .
GAO X Q , ZHU S H , DONG M , et al . ZIF-8 derived ZnO@NC supported Ru nanoparticles for efficient low-temperature hydrogenation of levulinic acid to γ -valerolactone [J ] . Journal of Catalysis , 2024 , 431 : 115382 .
XUE Y F , LI S Y , LI J F , et al . Enhancing propene selectivity in methanol and/or butene conversion by regulating channel systems over ZSM-5/ZSM-48 composite zeolites [J ] . Microporous and Mesoporous Materials , 2021 , 312 : 110803 .
HE S B , CASTELLO D , KRISHNAMURTHY K R , et al . Kinetics of long chain n -paraffin dehydrogenation over a commercial Pt-SnK-Mg/ γ -Al 2 O 3 catalyst: Model studies using n-dodecane [J ] . Applied Catalysis A , General, 2019 , 579 : 130 - 140 .
WANG H , WANG L , XIAO F S , et al . Metal@Zeolite hybrid materials for catalysis [J ] . ACS Central Science , 2020 , 6 ( 10 ): 1685 - 1697 .
GOEL S , ZONES S I , IGLESIA E , et al . Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement [J ] . Journal of the American Chemistry Society , 2014 , 136 ( 43 ): 15280 - 15290 .
CHO H J , KIM D , LI J , et al . Zeolite-encapsulated Pt nanoparticles for tandem catalysis [J ] . Journal of the American Chemistry Society , 2018 , 140 ( 41 ): 13514 - 13520 .
WANG N , SUN Q M , YU J H , Ultrasmall metal nanoparticles confined within crystalline nanoporous materials : A fascinating class of nanocatalysts [J ] . Advanced Materials , 2019 , 31 ( 1 ): 1803966 .
ZOU H T , JIN Y X , CHEN L M , et al . Encapsulating Ru nanoclusters for reductive amination of biomass-based furfural by shape-selective catalysis [J ] . ACS Catalysis , 2025 , 15 ( 3 ): 2017 - 2032 .
TOPIAS K A , YOUSEFI N , KONTTURI E , et al . Enhanced production of furfural via methanolysis of wood biomass with HCl gas [J ] . ChemSusChem , 2025 , 18 ( 3 ): e202401291 .
ZHU S H , GUO J , WANG X , et al . Alcoholysis: A promising technology for conversion of lignocellulose and platform chemicals [J ] . ChemSusChem , 2017 , 10 ( 12 ): 2547 - 2559 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution
蜀公网安备51012202001533